Lecture 10-10/11

- Smiple question: why $\vec{L}^{2}|l\rangle=\hbar^{2} l(l+1)|l\rangle$? maifh? (sance $f\left[\vec{l}_{1} L_{z}\right]=0$ and $\left.L_{z}|m\rangle \because m(m\rangle\right)$
- How do 1 Pigae whither 1 am in the viteraction picture or the rotating trame? When to use which? What about the RWA?
4 Let' smumasize: Interaction piature
$\left.0 H=H_{0}+V \Rightarrow H_{m a t}=e^{-i \frac{H}{2} t} V e^{i \frac{H}{2} t} ; 1 \psi_{\Sigma}\right\rangle=e^{-i \frac{H}{\Sigma} t}\left|\psi_{s}\right\rangle$
(im our cases: $e^{-i \frac{H}{E}+}=e^{-i \omega_{0} t}$ typicallg)
(c) With $V \propto e^{ \pm i \omega t} \Rightarrow$ get terms $e^{ \pm i\left(\omega \pm \omega_{0}\right) t}$

RWA: neglect "fast rotativiy", "counter-rot" toms (wheee is this a good approx? Block-Siegest shiff small.)
(0) Depine $\Delta \equiv \omega-\omega_{0} \Rightarrow$ Jinie-dep foms w/ $e^{\text {tist }}$ How does H_{I} now lobk? Typically: $\left(\begin{array}{cc}0 & \alpha e^{i s+} \\ x^{i+1} & 0\end{array}\right)$
(3) Totating frome

Hamiltoncian above leads to explicity time deprendent coms, arith a potectially fast oscillation $e^{\text {xist }} \Rightarrow$ go to rotahnig Proure by incorporalnis this fader nito variable, e. 7. $\quad c_{e} \rightarrow \tilde{C}_{e}=c_{e} e^{\text {tist }}$
or $\rho_{y} \rightarrow \tilde{\rho}_{8}=\rho_{4} e^{\text {zist }}$
This leads to

$$
\begin{aligned}
& \dot{c}_{c}=\left(\dot{c}_{c} \mp i \Delta \tilde{c}_{e}\right) e^{\mp i \Delta t} \quad \begin{array}{l}
\text { Typically, these } \\
\dot{S}_{y}=\left(\tilde{S}_{c_{q}} \mp i s \rho_{y}\right) e^{\text {Fist }}
\end{array} \quad \text { Herms cancel out. }
\end{aligned}
$$

Pluggiig bark unto $H_{I} \rightarrow \tilde{H}_{I}=\left(\begin{array}{cc}-\Delta & \alpha \\ \alpha^{*} & 0\end{array}\right)=e^{\mp i \Delta t} H_{I} e^{\text {iist }}$

- for aton number z (but only one c^{-})

$$
\begin{aligned}
E_{z} & =-Z^{2} \frac{R_{y}}{n^{2}} \\
R_{m}(S) & \propto S^{m+1} e^{-S / 2} L_{m-l-1}(\rho)
\end{aligned}
$$

"Laguerre polynomials"

Degeneracies: (sivan E/n)
(1) l, has in values $(0, \ldots, u-1)$
$\xrightarrow{(4)} \mathrm{m}$, has $2 l+1$ vales $(-l, \ldots,+l)$
(3) spin: 2 values)
each n las $2 \sum_{e=0}^{m-1}(2 l+1)=2 n^{2}$ degenerate soavefots.
(2) (3) Biffed By "relatioistic effects" (Dirac)

- lifted only by vacuum fluctuations:

Lamb shift
$E>0$ (continuum stales)
no limit on b

- geneal pooperles
(i) fixed l, small $r \Rightarrow$ wave $f o t$ bidipendent except for guceal scaling $n^{-3 / 2}$
(ii) fixed n : changing e affects only short range. (fo $r \rightarrow \infty$: effect of potential Garner negligible)
(iii) size: $\langle r\rangle=\frac{1}{2}\left(3 u^{2}-l(e+1)\right) a$

$$
\text { (iv) } \Delta E=Z^{2} R_{y}\left(\frac{1}{u^{2}}-\frac{1}{u^{2}}\right)
$$

c) Angular momentunn (What happensfor $2 e^{-}$? m geveral: $\vec{J}=\vec{r} \times \vec{p}$ or for combination of orbital anf nuon ard spin?)

$$
\text { (any ang mom) } \vec{\jmath} \times \vec{\jmath}=i \hbar \vec{\jmath}
$$

$$
\begin{aligned}
& \left.\left.\vec{f}^{2}\right|_{j, m_{j}}\right\rangle=\hbar^{2} j(j+1)\left|j, m_{j}\right\rangle \\
& \hat{f}_{2}\left|j_{j}, m_{j}\right\rangle=\hbar m_{j}\left|j, m_{j}\right\rangle
\end{aligned}
$$

(*) are equivalent

$$
\Rightarrow \hat{J_{ \pm}}\left|j, m_{j}\right\rangle=\hbar \sqrt{j(j+1)-m(m \pm 1)}\left|j, m_{j} \pm 1\right\rangle
$$

$$
\begin{aligned}
& \text { Addihiou: } \\
& \begin{array}{ll}
\text { ddihou: } & \vec{\delta} \\
{\left[\vec{y}^{2} \vec{च}^{2}\right]} & \vec{J}_{1}+\overrightarrow{\jmath_{2}}
\end{array} \\
& {\left[\vec{\jmath}^{2}, \vec{\delta}_{1 / 2}^{2}\right]=\left[\vec{\jmath}, \vec{\jmath}_{1 / 2}^{2}\right]-0} \\
& {\left[\vec{J}^{2}, \vec{J}_{1 / 2}\right] \neq 0} \\
& \text { (Gecomse : } \left.\vec{\jmath}^{2}=\vec{J}_{1}^{2}+\vec{J}_{2}^{2}+2 \vec{J}_{1} \cdot \overrightarrow{J_{2}}\right)
\end{aligned}
$$

- Eiyeustates Cof coupled ang mom. gperators)

1) "uncoupled reprisentatic":
$\left|f_{1}, m_{11}, f_{2}, u_{2}\right\rangle: \operatorname{good} q$. umbers (full desc of syphen) but not eigenstake of \vec{F}^{2}
2) "compled representation"
$\left.I_{j}, m, f_{i 1} j_{2}\right\rangle$ (also good g ub.)
eisenstale of $\vec{f}_{1}^{2}, f_{z}, \vec{f}_{1}^{2}, \vec{f}_{2}^{2}$, bat ret of $\hat{f}_{1 z} \cdot \hat{l}_{20}$
