Lecture 12-10/18

New. HW - some what diffocut ... read/vuderstond paper
R is typically defined as the raduis wher the uiteraction stougth equals the biewidth of the ercitation trausitia.

A fiw review articles:
Saffman, Walker, Molner, RMP 82, 23123 (2010)
Adams, Pritdeard, Shaffer, (.Phyp. B(Aro) 53, 012002 (2020)
Dunning, Killian, www.scientia global/rydbesg-atoms - giants - of - the -atomic-world/

Cate usnig Rydtery blocracle:
phase gale: $\left.\begin{array}{ll|l}00 & 0 \\ 1 & 0 & \begin{array}{lll}a & b & 0 \\ & b & c\end{array} \\ 0^{\prime} & & d\end{array}\right)$
u n a nonlinear gate if $|a|=|b|=|c|=|d|=1$ and nomialize to $a=1$ $\Rightarrow \arg b+\arg c \neq \arg d$
qubits : hypefmie states of $(g)($ call 10$\rangle, 11)$):

()$^{2 \pi}: 2 \pi$ pulse

One 2π-pulse on a trausition (or a combiriation of 2π-pubes) gios an orerall shifl of π. The same pulse not on a trausitio. does nothing.

NB: Whey?

Smiplify : no detuning $s=0$

$$
\begin{aligned}
& \text { no detuning } B=0 \\
& \text { real } \Omega_{2} \quad \rightarrow 0
\end{aligned} H=\left(\begin{array}{cc}
0 & -\frac{\Omega}{2} \\
-\frac{\Omega}{2} & 0
\end{array}\right)
$$

\Rightarrow with $14(0)>=10)$

$$
\begin{aligned}
&\left.14(t)\rangle=\operatorname{ces} \frac{\Omega t}{2} 10\right\rangle+i \sin \frac{\Omega t}{2}|1\rangle \\
& \Rightarrow \pi=\Omega t \Rightarrow \quad \mid 4(t))=i|1\rangle \\
& 2 \pi=\Omega t \Rightarrow \quad \quad|4(t)\rangle=-10\rangle
\end{aligned}
$$

Other applications:

- Controlling e^{-}-motion : orbital period long (~ 10 's us) use extonal field kicks \Rightarrow any form of orbit

Example: mimic Jupiter's Trogain asteroids

- Seusuin: use EIT to detect mi/out of resonance explani
- Rydberg molecules:

Rydberg , gif. atom
\Rightarrow sense "tito. bite"- formed field/wavelat of Rydberg
e) Dirac Equation
(Relativistic "corrections")
(i) Stir. Eq. violates relativity! energy: (here potiche)

$$
E^{2}=m^{2} c^{4}+p^{2} c^{2}
$$

with field:

$$
\begin{aligned}
& E \longrightarrow E-9 \varphi \\
& \vec{n} \longrightarrow \vec{p}-9 \frac{1}{6}
\end{aligned}
$$

$E \rightarrow i \hbar \partial_{+} ; \vec{p}=-i \hbar \vec{\nabla}$
\Rightarrow Kleni - Gordon Eq.

$$
\left(\frac{1}{c^{2}} \partial_{t}^{2}-\nabla^{2}\right) \phi+\frac{m^{2} c^{2}}{t^{2}} \phi=0
$$

$\xrightarrow{(4)}$ plane wave solution (i)
$b /$ it is seconal order diff eq. \Rightarrow fire dioice for both, initial value of ϕ and ϕ^{\prime}.
(but does work for spui-0 pertides)

- Dirac wankel linear in E (and $\left.\partial_{+}\right)$
"square root" of Vlien-Gordon \Rightarrow (al least) 2 cousponents (spuior")

$$
H=c \stackrel{\alpha}{\alpha} \cdot \hat{p}+\beta m c^{2}+V(r) \quad(1 a)
$$

$$
\begin{equation*}
(H, 4\rangle=E 14\rangle) \tag{4}
\end{equation*}
$$

$$
\text { with } E^{2}=\langle H\rangle^{2} \stackrel{!}{=} m^{2} c^{4}+p^{2} c^{2}
$$

$$
\left.\begin{array}{cc}
=\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \underline{/} \tag{1b}\\
\alpha_{i} \beta_{2}+\beta \alpha_{i}=0
\end{array}\right\}
$$

covaricur

- form?

$$
\gamma_{0}=\beta
$$

$$
\beta^{2}=1 /
$$

$r_{i}=\alpha_{i}=D$ it $\gamma^{\mu} \partial_{\mu} \psi=\operatorname{me}$
droose snimlest representation:

$$
\vec{\alpha}=\left(\begin{array}{ll}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) ; \beta=\left(\begin{array}{cc}
\mathbb{1}_{2 m 2} & 0 \\
0 & -\mathbb{1}_{2+2}
\end{array}\right)
$$

(Ib needs at least 4 dol to be solved)

$$
\left.\begin{array}{l}
\psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\left(\frac{\vec{\psi}+}{4}-\right), \vec{\psi}_{ \pm} \cdot 2 D \text { spinors" } \\
\text { (la) }(\vec{\sigma} \cdot \vec{p}) \vec{\psi}_{+}=\frac{1}{c}\left(E+m c^{2}-V(\cos) \vec{\psi}_{-}\right. \\
(\vec{\sigma} \cdot \vec{p}) \vec{\psi}_{-}=\frac{1}{c}\left(E-m c^{2}-V(r)\right) \vec{\psi}_{+}
\end{array}\right\} \quad\left(1 a^{n}\right)
$$

non-relatrioishc: $|\vec{\sigma} \cdot \vec{p}| \approx m v \ll c^{2}$

$$
\begin{aligned}
& E>0:\left|E+m x^{2}-V\right|>\left|E-\mu c^{2}-V\right| \\
&|\vec{\sigma} \cdot \vec{p}| x m v, E-\mu c^{2}-V \approx \frac{1}{2} \mu v^{2} \\
&\left(1 a^{*}\right) \Rightarrow \frac{\left|\vec{\psi}_{+}\right|}{\left|\vec{\psi}_{+}\right|} \times \frac{2 c}{v} \gg 1 \\
&\left.\Rightarrow \overrightarrow{4}_{+} \text {(for } E>0\right) \text { more relevant! }
\end{aligned}
$$

(opposite for $E<0=\left|\psi_{-}\right| \gg\left|\psi_{T}\right|$)
\Rightarrow "positive" $\left(\overrightarrow{4}_{T}\right)$ and "regatice" (\vec{y}_{-}) energy solutions (luhopretations" "electron sea" : E<O "Roles")

$$
\left(1 a^{-}\right)=0 \quad(\stackrel{\rightharpoonup}{\sigma} \cdot \stackrel{\rightharpoonup}{p}) \frac{c^{2}}{E+m^{2}-V}(\vec{\sigma} \cdot \vec{p}) \vec{\psi}_{+}=\left(E-m c^{2}-V\right) \overrightarrow{4}_{+}
$$

\Rightarrow call "spin"
Why factor of 2 ?
Ln such that $\stackrel{\rightharpoonup}{ }$ spur commetatic relations can be sakis fred
L there are (at least) 2 spin components $=0$

$$
\begin{aligned}
& {\left[\left(1-\frac{\varepsilon-V(r)}{2 m c^{2}}\right) \frac{D^{2}}{2 m}-i \hbar \frac{1}{4 m^{2} c^{2}} \frac{V}{=} \frac{V(r)}{r}(\vec{r} \cdot \vec{p})\right.} \\
& \left.\quad+\frac{1}{2 m^{2} c^{2}} \frac{V^{\prime}(r)}{r} \vec{S} \cdot \stackrel{\Sigma}{\Psi}\right]=(\varepsilon \cdot V(r)) \nleftarrow+
\end{aligned}
$$

$$
\text { with } \varepsilon-V(r) \approx \frac{p^{2}}{2 u}
$$

higher spurs?
$\Rightarrow\left(\begin{array}{ll}0 & 5 \\ 6 & 0\end{array}\right)$ for higherdin. Paulis

$$
\begin{aligned}
& \left(\varepsilon \equiv E-\operatorname{sic}^{2}\right) \\
& -\frac{c^{2}}{2 m c^{2}+\varepsilon-V} \approx \frac{1}{2 \mu}\left(1-\frac{\varepsilon-V}{2 m c^{2}}\right) \\
& -(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) \equiv \vec{A} \cdot \vec{B}+i \vec{\sigma}(\vec{A} \times \vec{B}) \\
& =(\vec{\sigma} \cdot \vec{p}) f(r)(\vec{\sigma} \cdot \vec{p})= \\
& =f(r)(\vec{\sigma} \cdot \vec{p})(\stackrel{\rightharpoonup}{\sigma} \cdot \vec{p})-i \hbar r f^{\prime}(r)(\vec{\sigma} \cdot \vec{p})(\vec{\sigma} \cdot \vec{p})= \\
& =f(r) \vec{p}^{2}-i \hbar \frac{f^{\prime}(r)}{r}(\vec{r} \cdot \vec{p}+i \vec{\sigma}(\vec{r}+\vec{p})) \\
& \text { with } f(r)=\frac{1}{2 m}\left(1-\frac{\Sigma-V(r)}{2 m c^{2}}\right) \\
& \hbar \vec{\sigma}=2 \vec{s} ; \vec{r} \times \vec{p}=\vec{L} \\
& \text { definition of quality with } \\
& \text { dimension of } t \text { (lng nom.) }
\end{aligned}
$$

