Lecture 15-10/30

Topics: "all the multi- level" stuff -. :

- hypefme uiteraction
- atoms mi fields:
$\rightarrow$ magruelic (ie. niteraction with inge dipoles)
$\rightarrow$ electric (change of transitions)

What is the "quantization axis? How is it determined?
(1) What is it?
$\rightarrow$ Angular mom: has two gracutwne numbers, one commented to its sheugh: $\tilde{j}^{2} \rightarrow j\left(y_{1}\right)$, one to its profictionto the $z$-axis $y_{z} \rightarrow m_{d}$ This $z$-axis is the "quantization axis" (i.e., the direction along which the profichion is quaustired.)
(2) How to choose?

Since the physios is determuid by what is mecusurable, ultimately, the quacetization axis haste be the measurement direction. (If we measure scaleless, i.e.sealar products, we cen choose the most convenient direction.
(3) What happens when the are seconal miportant directions?
$\rightarrow$ Make a judgment call... often mi there cases, ere Look at the extreme causes in both directions and interpolate/ diagonalize

- Lander ge-factors
$\vec{J}=\vec{L}+\vec{S}$ gives good q mutes (Dirac)
(for zero or low magnetic field)
$\rightarrow g_{s i} g_{2}$ don 'A conlibibite independently!

(only $|\vec{L}|,|\vec{S}|, L_{2}, S_{z}$ defined. For zero un.
field: JUl quantization axis

$$
\hat{\equiv} \hat{z}
$$

$\Rightarrow$ hind sum of progictions of $\vec{\mu}_{s}$ and $\vec{\mu}_{\perp}$ on $\vec{j}$.

$$
\begin{aligned}
& \vec{L}: \mu_{c, j}=-\frac{\mu_{0}|\vec{L}|}{\hbar} \frac{\vec{L} \cdot \vec{J}}{|\vec{L}| \cdot \sqrt{J} \mid} \quad \vec{S}: \mu_{s, j}=-g_{s} \frac{\mu_{0}(\vec{S})}{\hbar} \frac{\vec{S} \cdot \vec{J}}{|\vec{S}||\vec{J}|} \\
& \vec{\mu}_{j}=-g_{J} \mu_{0} \frac{\vec{J}}{\hbar} \quad g_{g}=-\frac{\hbar}{\mu_{0}} \frac{\mu_{2, j} \mu \mu_{g}}{(J)} \\
& g_{s}=\frac{g_{L} \vec{L} \cdot(\vec{L} \cdot \vec{S})+g_{s} \vec{S} \cdot(\vec{L}+\vec{S})}{\left.1 \vec{J}\right|^{2}}=\quad \text { No: } \vec{L} \cdot \vec{S}=\frac{1}{2}\left(\vec{J}^{2}-\vec{L}^{2}-\vec{S}^{2}\right) \\
& =1+\frac{f(j+1)+s(s+1)-l(l+1)}{2 j(j+1)}
\end{aligned}
$$

ignore $\vec{I}: \quad U=-\vec{\mu}_{j} \cdot \vec{B}$,

$$
\vec{F}=\vec{I}+\vec{J} \text { : same logic) }
$$

Transitions: level $j^{\prime} \leftrightarrow$ level $j^{\prime \prime}$ (or $I^{\prime}, F^{\prime \prime}$
three or more lines : "Eeeman" ( low magnetic fields)

$$
\begin{aligned}
& \text { ecg. } \Delta m^{\prime}\left(\equiv m_{j^{\prime}}-m_{j^{\prime}}\right) \\
& \Delta E=\left(g_{j}, m_{j_{1}}-g_{j^{*}} \mu_{j}\right) \mu_{0} B \text { (from s.1) }
\end{aligned}
$$

$$
\begin{aligned}
& \vec{\mu}_{j}=-g_{j} \mu_{0} \frac{\vec{J}}{\hbar} \quad g_{\delta}=-\frac{t}{\mu_{0}} \frac{\mu_{2, j} t \mu_{3,}}{(J)} \\
& g_{J}=\frac{g_{L} \vec{L} \cdot(\vec{L}+\vec{S})+g_{s} \vec{S} \cdot(\vec{L}+\vec{S})}{1 \vec{J})^{2}}=\quad N_{0} k: \vec{L} \cdot \vec{S}=\frac{1}{2}\left(\vec{J}^{2}-\vec{L}^{2}-\vec{S}^{2}\right) \\
& =1+\frac{i(j+1)+s(s+1)-l(l+1)}{2 j\left(j^{1}+1\right)} \\
& \vec{\mu}_{F}=-g_{F} \mu_{0} \frac{\vec{F}}{\hbar} \quad g_{F}=-\frac{\hbar}{\mu_{0}} \frac{\mu_{d, F}+\mu_{T_{1} F}}{|\vec{F}|} \\
& \sqrt[5]{\frac{3}{7}} \\
& \vec{L}: \mu_{L, j}=-\frac{\mu_{0}|\vec{L}|}{\hbar} \frac{\vec{L} \cdot \vec{j}}{|\vec{L}| \cdot \sqrt{J} \mid} \mu_{\jmath_{1}+}=-\frac{\mu_{0}|\vec{J}|}{\hbar} \frac{\vec{J} \cdot \vec{F}}{|\vec{J}| \cdot|\vec{F}|} \\
& \mu_{I, F}=+\frac{\mu_{N}|\vec{I}|}{\hbar} \cdot \frac{\vec{I} \cdot \vec{F}}{|\vec{I}||\vec{F}|}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(g_{s}-\tilde{g}_{2}\right) F(F+1)+\left(g_{1}+\tilde{g}_{2}\right) j\left(j_{+1}\right)-\left(g_{1}+\tilde{g}_{2}\right) I(I+1)}{2 F(F+1)}
\end{aligned}
$$

for $g_{s}=g_{d^{\prime \prime}}$ or $j^{\prime}=0$ or $j^{\prime \prime}=0$ : one $\Delta E$
(three tokal shifts: sur $=0, \pm 1$, otherwise more!
Hgrofice stouctire + magn. feild

$$
\begin{aligned}
& H=a k \vec{I} \cdot \vec{J}-\vec{\mu}_{J} \vec{B}-\vec{\mu}_{I} \cdot \vec{B} \\
& \vec{\mu}_{j}=-g_{V} \mu_{0} \frac{J}{\hbar} ; \vec{\mu}_{I}=-g_{I} \mu_{N} \frac{\vec{I}}{\hbar}
\end{aligned}
$$

- low hild : F, mf are good q. innbers ( $\stackrel{\tilde{F}}{ }$ is quantization asis)
$=0 H_{3}=-\left(\vec{\mu}_{1}+\vec{\mu}_{I}\right)-\vec{B}$ is pertubation

$$
e . g .
$$

$$
A B
$$

$$
\begin{aligned}
& \text { ngglect.... } \\
& \Rightarrow\langle\vec{J} \cdot \vec{B}\rangle=\frac{\langle J \cdot F\rangle \cdot \vec{F} \cdot \vec{B}}{\left|F^{2}\right|} \\
& \langle\vec{J} \cdot \vec{F}\rangle=\langle\vec{J} \cdot(\vec{j}+\vec{I})\rangle=\frac{1}{2}(F(F+1)+j(j+1)-I(I+1))
\end{aligned}
$$

$$
\begin{aligned}
& \langle\mid r\rangle=E \Delta
\end{aligned}
$$

large $B$ fild: quaukize along $B$ !
$I_{1} m_{I}, J, m_{j}$ are good 9, nimbers

$$
\Rightarrow \text { H } x \text { a } h m_{1} \cdot m_{j}+g_{j} m_{j} \mu_{0} B-g_{I} m_{I} \mu_{v} B
$$

seneral solechore: (ang B)
diafonalise it!
annlytic solution only $\operatorname{por} 2 \times 2$ ( $I \leq \frac{1}{2}$ or $j \leq \frac{1}{2}$ )
i.e. 2 uf states

Example: "Breit-Rabe" formila" diafram
from Wolfan: for $F=I \pm \frac{1}{2}$
b) Homs ii ()C eleatic fulds
(i) Consideration of parity
"parity" - effect under space niverion:

$$
\hat{\vec{r}} \longrightarrow-\hat{\vec{r}}
$$

- Defuer a parity operator: $\hat{\pi}: \hat{\pi} \hat{\vec{r}} \hat{\pi}^{+}=-\hat{r}$

$$
\text { with } \frac{\pi}{\pi}+=\pi
$$

(use jus l $x$-coord-same for $y, z$ )

$$
\begin{aligned}
& \hat{x}|\vec{r}\rangle=x|\vec{r}\rangle \quad(\Leftrightarrow \hat{r}|\vec{r}\rangle=\hat{r}|\vec{r}\rangle) \\
\Rightarrow & \hat{x} \hat{\pi}|\vec{r}\rangle=-\hat{\pi} \hat{x}|\vec{r}\rangle=-\hat{\pi} \times|\vec{r}\rangle=-x|\hat{r}\rangle
\end{aligned}
$$

$\Rightarrow \hat{\pi}|\vec{r}\rangle$ is eigufunction of $\hat{\vec{r}}$ with eijuvalue $-\vec{r}$.
use space niversion ( $\pi$ ) twice will give identity?

$$
\left|\hat{\pi}^{2}\right|=1 \Rightarrow \text { eifmivalues }\langle\hat{\pi}\rangle= \pm 1
$$

| behavior | slate | operator |
| :--- | :--- | :--- |
| "odd party" | $\hat{\pi}\|\alpha\rangle=-\|\alpha\rangle$ | $\tilde{\pi} \hat{A} \hat{\pi}=-\hat{A}$ |
| "eon parity" | $\tilde{\Pi}\|\alpha\rangle=\|\alpha\rangle$ | $\hat{\pi} A \hat{\pi}=\hat{A}$ |

$$
\begin{aligned}
& \hat{\vec{r}}, \hat{\vec{p}}-\text { odd } \\
& \vec{L}=\vec{r} \times \vec{p} \text { even } \rightarrow \text { "altar") vectors } \\
& \rightarrow \text { "axial" vectors }
\end{aligned}
$$

- spherical harmoincs:

$$
\hat{\pi}\left|Y_{e m}\right\rangle=(-1)^{e}\left|Y_{e m}\right\rangle
$$

$\Rightarrow$ selection rules:

$$
\langle\alpha| \hat{A}|\beta\rangle \neq 0 \quad \begin{gathered}
\text { "allowed" } \\
\text { ctransifio }
\end{gathered}
$$

$=0$ selection rules :

$$
\langle\alpha| \hat{A}|\beta\rangle
$$

"allowed"
ctransitio fon 1\%> to $i \alpha>$ usiof citerachic $\hat{A}$ )
$=0$ "forbiddeu"
中 coupluig"/úteractic operator, e.g. e $\hat{\vec{r}}$
parity selection reeles:

$$
\begin{aligned}
& \hat{\pi}|\alpha\rangle=p_{\alpha}|\alpha\rangle, \hat{\pi}|\beta\rangle=p_{\beta}|\beta\rangle \quad p_{\alpha}, p_{\beta}= \pm 1
\end{aligned}
$$

$\Rightarrow$ "allowed" ouly for $p_{\alpha}=-p_{\beta}$
(same for any odd coupling operat) even compling operabor: "allowed" for $p_{\alpha}=p_{\beta}$

$$
\left[H_{0}, \hat{\pi}\right]=0 \quad H_{0} \propto \vec{p}^{2}, \frac{1}{r^{2 n}}, \frac{1}{|\vec{r}|} \text { (evxu) }
$$

= $\Delta$ enguefinctions of (indistirbed) adoncic Hamiltomian all odd or even? (as a basis) Sacue if maguetic feild is poesent : $\vec{B}$ even, $\vec{J}$ ever
(ii) Stahic $D \subset$ fild

Pertiobalion Heary:

- non-definerate energy levels: $\vec{E}=E z$

$$
\Delta E_{n}^{(\prime)}=e E\langle u| \tilde{z}|u\rangle=0 \quad\left(H|u\rangle=E_{u} \operatorname{m}\right)
$$

$$
\Delta E_{m}^{(2)}=(e E)^{2} \sum_{m \neq n} \frac{|\langle m| \hat{\varepsilon}| m\rangle\left.\right|^{2}}{E_{n}-E_{m}} \quad(\neq 0 \text { i fraval) }
$$

$\propto E^{2} \Rightarrow$ "quadiatic Stark effect".

$$
|\tilde{u}\rangle=|m\rangle+e E \sum_{m \neq m} \frac{|\langle m| z| m\rangle\left.\right|^{2}}{E_{n}-E_{m}}|m\rangle
$$

$\Rightarrow|n '\rangle$ not eigrifel of $\frac{\pi}{\pi}$ ? Nelectrous: $\hat{z} \rightarrow \sum_{i=1}^{N} \vec{z}_{i}$ (Same)

- polarizability $\alpha_{d}$ :

$$
\begin{aligned}
\vec{d} & =-e\langle m| \tilde{z}\left|n^{\prime}\right\rangle= \\
& =2 e^{2} \sum_{m \neq n} \frac{1\langle m|\left(\left.\tilde{z}|n\rangle\right|^{2}\right.}{E_{m}-E_{m}} E+O\left(E^{2}\right) \\
& \equiv \alpha_{d} \vec{E}
\end{aligned}
$$

$\Rightarrow$ quadiatic Shark effect:

$$
\Delta E_{m}^{(2)}=-\frac{\alpha d}{2} E^{2}
$$

- Degunarate enogy levels $\Delta E_{m}^{(1)} \neq 0$ in feneral:
Example: $u=2$ :

$$
H \alpha\left(\begin{array}{ccccc|cc}
E_{1} & 0 & 0 & e & E\langle z\rangle_{14} & 0 & |100\rangle \\
0 & E_{2} & 0 & 0 & 0 & 1211\rangle & 0 \\
0 & 0 & E_{2} & 0 & 0 & 121-1\rangle \\
e E\langle z\rangle_{41} & 0 & 0 & E_{2} & e E\langle z\rangle_{45} & 1210\rangle \\
0 & 0 & 0 & e E\langle z\rangle_{s 4} E_{2} & 1200\rangle & \text { (5) }
\end{array}\right.
$$

all "o" $b /$ su $\neq 0$, or $s l=0$ diaforahize...

Ex:
$\left.\left.\frac{1}{\sqrt{2}}(1210\rangle \pm 1200\right\rangle\right)$ - eijeustole
with $E_{2} \pm C E<z$ ?

$$
\omega|(z\rangle=|\langle 210\rangle \hat{z}| 200\rangle \mid
$$

livear nu"E!
$\Rightarrow$ h hiear Shark effech (see effect it. Frecdrich)
Coolfeil: calculator ohanges if E H qnanlic
(iil)Strong fuilds: Fichal ioncizalic


$$
\begin{aligned}
& u_{\text {tot }}=u_{\text {atom }}+u_{d} \\
&=-\frac{z^{\tilde{e}^{2}}}{|z|}-e E z \\
& \Rightarrow u_{\text {mad }} \text { for } z=\sqrt{\frac{z e}{4 \pi \epsilon_{0} E}}
\end{aligned}
$$

for $\langle\mid H\rangle=U_{\text {max }}$

$$
\begin{aligned}
& E_{\text {ion }}=\frac{\langle H\rangle^{2}}{4 \tilde{e}^{2} Z} \approx \frac{3.2 \cdot 10^{8}}{z_{\mu^{*}}} \frac{V}{\operatorname{cu}} \\
& \left(\mu^{*}=\mu-\delta_{m c}\right)
\end{aligned}
$$

This eohmate is correct to $\sim 20 \%$
neglected: - affect of $\tilde{E}$ on $H$

- timeling ...
(iv) Oscillating electric field
armure case where $H^{\prime}=-d E z^{+} \cos \nu t$, but where $t \nu$ is potentially very far away from any transition resonance ( $=0$ no Transition necessarily)
Arsume suchiple $(\geqslant 2)$ shakes: $|\psi\rangle=\sum_{m} a_{m} e^{-i m_{n} t}|n\rangle$

$$
\dot{a}_{k}=\frac{1}{\hbar} \sum_{m}\langle k| H^{\prime}|u\rangle a_{m} e^{i \omega_{\text {kan }} t}
$$

$\Rightarrow$ solve for $\vec{d}=\langle\psi| e \vec{r}|\psi\rangle$
(similar calces as for classical dipole ii chaplet 1)

$$
\begin{aligned}
\Rightarrow d(\nu, t) & =\alpha(\nu) E \cos \nu t \\
\alpha(\nu) & =\frac{2 e^{2}}{\hbar} \sum_{k} \frac{\left.\omega_{\text {kg }}|\langle k| \hat{\vec{r}}| g\right\rangle\left.\right|^{2}}{\omega_{k_{t}}{ }^{2}-\nu^{2}}
\end{aligned}
$$

with

AC polarizability

