Lecture 20-11/17

Amorince:

- Will do proup theory/symmer for rest of dass $\rightarrow D$ who knows? I'll poot pages from Drew elhcus look.

Programe:

- Many-elechon alows
- Symineto y
c) Hurd's rules
(1) In any given subshall (same u, same L), state with largest 5 is energetically lowest.
(2) For same shell (same n), same S shah with highest L has lowest energy.

Reason un both cases: get $e^{-\prime}$'s as for apart as possible?
(1) gives bigger enogg difference than (2).

Example: $1 s^{2} 2 s^{2} 2 p^{2}$
$u=2$ \qquad
\qquad 'S..\sim ' S_{0} ${ }^{1} D \mathrm{D} \cdot \cdots={ }^{1}={ }^{3} P_{2} D_{2}$
Why? Open sub-shell: $2 p^{2}$

$$
\begin{array}{rlr}
\left|l_{1}-l_{2}\right| & \leqslant L \leqslant\left|l_{1}+l_{2}\right| & \left(l_{1}=l_{2}=1\right) \\
0 & \leqslant 2 & \leqslant s_{1}-s_{2} \mid
\end{array}
$$

$=$ in priviaple: $L=\left\{\begin{array}{l}0 \\ 1 \\ 2\end{array}, S=\left\{\begin{array}{l}0 \\ 1\end{array}\right.\right.$

$$
{ }^{2351} L_{1} \rightarrow{ }^{1} S_{0},{ }^{3} S_{1},{ }^{\prime} P_{1},{ }^{3} P_{i}, D_{2},{ }^{3} D_{3}
$$

which allowed?
Symmetry: $S: \quad S=0$ (odd) $\quad S=1$ (even)
L : $S_{1} D$ (even) P code)
${ }_{=0} S_{0}, D_{2},{ }^{3} P_{i}$ allowed?
$1^{\text {st }}$ Hund's rell : ${ }^{3} P$ Cowedh
$2^{\text {nd }}: S$ higles than D
How to sort different J :
in principle: case-to -cose
in prachice:
"regular" (Enegy $\sim J)-f o r ~ u p ~ t o ~ c a l f-f i l l e d ~$
subshells (\downarrow)
"inverted" ordernicy : otherwise
Nole: "reason" for Hind's oules:
0 : subskells (e.g., p_{x}, p_{y}, p_{t}) singly ocaupidel before paiting (due to e^{-}-repulsion), all se saue spui (if possible) \& more effective screeming
(2): higher $L \longleftrightarrow$ larger distance briween c^{-}
"B": $\left\langle H_{\text {spui-orbit }}\right\rangle=\zeta\langle\vec{L} \cdot \vec{S}\rangle \Rightarrow E_{j+1}-\left.E_{j}\right|_{\text {equal }}=\zeta(f+1)$
$\xi>0$ ("regular") for subshell reled by e^{-}
$\zeta<0$ ("nivorkd")
holes
ui general: (p^{\prime} and p^{5}) or $\left(p^{2}\right.$ and $\left.p^{4}\right)$
$\left(d^{\prime}\right.$ and $\left.d^{9}\right)$ or (d^{2} and d^{8})...
have same configuration li.e. é un empiy subshells have same effect as holes in full subshell!
9) Symmetig
a) Short rivies(selection reles)

So fars
parity: $\Delta l, \Delta f=$ odd
spherical $\Delta l= \pm 1, \Delta j= \pm 1,0$
synnuetry: sme, smi $= \pm 1,0$
In fenval:
Sypten is symmetric undes opecitor \hat{R} :

$$
\left[H_{0, R}^{R}\right]=0
$$

b) time reversal symmedry

$$
\hat{T}: t \rightarrow-t
$$

even: $\vec{r} \Rightarrow \ddot{\vec{r}}, \vec{F}, E, V\left(\alpha r^{\alpha}\right), \vec{d}, \ldots$
odd : $\dot{\vec{r}} \Rightarrow \vec{L}, \vec{f}, \vec{B}, \ldots$
Sumple case: (S.Eq.).

$$
\hat{T} \psi(t)=\hat{T} \quad \psi(0) e^{-\frac{i}{2} H t}=y(0) e^{+\frac{i}{\hbar} H t}=\psi^{x}(t)
$$

Properhies
(1) $[\hat{T}, H]=0$
(2) $\hat{T} i=-i \hat{T} \Rightarrow \hat{T} a=a^{*} \hat{T}$
anti-l licar
(3) $\hat{T} \psi(t)=\psi^{*}(t) \hat{T}$
(4) no spin: \tilde{T} is fust "c.c. opertar \hat{K} wille spui: $\hat{T}=\hat{X} \sigma_{y}$
no spin: $\tilde{\tau}^{2}=1$
with spin: $\tilde{T}^{2}=-1$
(more details: Dressellenes script)
Consequences:

- $\hat{T}(\operatorname{and} \hat{K})$ is "auki-mitary"
- Kramer's theoren : for $\hat{l}^{2}=-1$ lus to have at least a 2DVirred representation Ltwo degenerate eisenfunctions)
(Proof)'tine-riversed state also eifenshak, but comol) be the same.)
- Electic fila cuncrot splif shates $\pm / \mathrm{m} \mid: \vec{E}$ is even moder \% angular nom is odd? energy has to be neviant uncler \mathfrak{T}.
- Electric dipole noment: EDM:

In intrinsic (i.e ustinduced) EDM violates both Tand Psymedries.
Proof: total sugular noven (of portide, e.g. e^{-}) : \vec{J} assume cipole movient \vec{d} :
dl has fo be parallel to \vec{J} (all compoients 1 to J averafe out, J ouly preferred directic!

$$
\Rightarrow \vec{d}=\beta \vec{J} \quad(\beta \in \mathbb{C})
$$

\vec{d} changes under P, but nob nuder T \Rightarrow cither (separasicly):

$$
\begin{aligned}
\vec{d} & =\beta \vec{J} & \stackrel{\rightharpoonup}{\vec{P}}> & \vec{d}=-\beta \vec{J} \\
& \Rightarrow \beta=0 & \Rightarrow \Delta & \vec{d}=0
\end{aligned}
$$

