	Lecture 20-	<u> /17</u>		
<u>Announce:</u> • Will do froup 1'll post p	o theory/symmer. fo sops from Dieno el	s post of class have book.	-D who	knorss ?
<u>Program :</u>				
• Many - electron • Symmetry	abours J-			

c) Hund's rules • In any given substiell (same n, same L), state with largest 5 is energetically lowest. (2) For same shell (same n), same S shake with highed L has lowest energy. Reason in both cases: get c's as far apast as possible? () gives bigger energy difference than (2). Example: 1s² 2s² 2p² د ۲۰ مر ا $\frac{1}{2} = \frac{1}{2} = \frac{1}$ _____'D m2 $= \frac{3P_{z}}{3P_{o}}$ -3P Why? Open sub-shell: 2p2 $|l_1 - l_2| \leq L \leq |l_1 + l_2|$ $(l_{2} = l_{2} = 1)$ 0 \equiv L \equiv 2 $|s_1 - s_2| \leq S \leq |s_1 + s_2|$ $(s_1 = s_2 - \frac{1}{2})$ 0 4 5 4 1 =0 in principle: LEE', S= E' $L_{J} \rightarrow S_{o}, S_{o}, P_{o}, P_{o}, D_{2}, D_{2}$ which allowed ? Symmetry: S: S=Olodd) S=1 (even) S.D (even) P codd) only 'So, D2, 3 Po allowed &

1st Hund's rule: 3 P Correct
2nd : Shighes Ham D
How to sort different J:
in principle : case-lo-cose
ni prachice:
"regular" (Guegg~) - for up to half-filled substiells (V)
"invekel ordernig : otherwise
Note: reason for Hund's oules:
O: substiells (e.g., pr, py, pr) singly occupied before
pairing (due do c'-repulsion), all la same sprin (if
possible) 4= more effective screening
3: ligter L LED larger distance between c
$\mathfrak{G}': \langle H_{spin} - orbit \rangle = \overline{\zeta} \langle \overline{L} \cdot \overline{S} \rangle = \mathcal{D} E_{j+1} - E_j _{equal} = \overline{\zeta} (j+1)$
3 > 0 ("regular") for subshell ruled by e-
340 ("nivoled") holes
ingeneral: (p' and p ⁵) or (p ² and p ⁴)
(d'and d?) or (d ² and d ⁸)
have some configuration (i.e. c' in empty
subshells have same effect as holes in full subsheld!

9) Symmetry a, Short review (selection rules) So for , parity: Sl, Af = odelspherical $Sl = \pm 1$, $Sj = \pm 1,0$ symmetry: Sme, $Smj = \pm 1,0$ In fereral: System is symmetric under operator R: [H. R] = 0 B) time reversal symmetry $vou: \vec{F} \rightarrow \vec{F}, \vec{F}, E, V(\kappa r^{\kappa}), \vec{d},$ odd: F=0 L, J, B,.... Simple case: $(S.E_{g.})$ \hat{T} $(4(1) = \hat{1}$ $(0)e^{-\frac{1}{2}H+1} = 4(0)e^{+\frac{1}{2}H+1} = 4^{(1)}$ Properties O[T, H] = O $(a) \hat{T} = -i\hat{T} = -i\hat{T}$ 3 T 4 (t) = 4"(t) T

@ no spin: T is just c.c. operator K with spin: T = K Gy 10 spin : 1 = 1 N.S with spin: T = - 1 (more details: Dressellicues script) Consequences: Î (and K) is "anti- unitary" Kramer's theorem : for T'= -1 has to have at least a 20 representation (two degenerate cigenfunctions) (Proof > fune - reverse al state also eigenstate, but connot be the same.) Electric files cannot split sales ± [m]: È is even unde T, augular mom. is call: energy has to be meciant un de F. Electric dipole moment: EDM. In intrinsic (i.e. not induced) EDM violates both T and P symmetries. Proof: total augular mon (of pshicle, e.g. e):] assume dipole moment d: à has to be parallel to j (all components 1 to j average out, jouly preferred directic!) = $d = \beta \int (\beta \in C)$

J cleanges uncle T, but not unde P. I changes uncle P, but not undes T = δ either (seperably); $d = \beta \int_{P} = 1 \delta d = -\beta \int_{P}$ $=0 \beta = 0 = 0 \alpha = 0$