Lecture 21-11/20
C) (Discrete) Group Theory in A MO and in General

Questions related to symmetry that come up in AMO:
\rightarrow What are the possible single-and multi-particle states?
\rightarrow What degeneracies exist?
\longrightarrow What couplings or selection rules are there?
Quantum Mechanics + Group Theory
What symmetries leave H invariant?
\longrightarrow Group of these symmetry operations \rightarrow "group of the Schrödinger equation"
\longrightarrow The group can be represented in terms of matrices \rightarrow "representations"
\longrightarrow These matrices act on the eigenstates / basis functions
\longrightarrow Dimension of degenerate eigenspaces = dimension of "irreducible representations"

Definitions
A group is a set $G=\left\{g_{i}\right\}$ with the following rules:

1) $g_{i}, g_{j} \in G \rightarrow g_{i} \cdot g_{j} \in G$, where $g_{i} \cdot g_{j}$ denotes the "product" or "addition" of the two elements
\longrightarrow for symmetry operations, $g_{i} \cdot g_{j}$ means that first g_{j} is applied, then gi
2) $\left(g_{i} \cdot g_{j}\right) \cdot g_{k}=g_{i} \cdot\left(g_{j} \cdot g_{k}\right) \rightarrow$ associative law
3) $\exists e \in G$ s.t. $g_{i} \cdot e=e \cdot g_{i}=g: \forall g_{i} \in G \quad \rightarrow$ existence of a unity element
4) $\exists g_{i}^{-1} \in G$ s.t. $g_{i}^{-1} \cdot g_{i}=g_{i} \cdot g_{i}^{-1}=e$
5) If $g_{i} \cdot g_{j}=g_{j} \cdot g_{i} \forall g_{i}, g_{j} \in G$, then G is called "Abelian"

A subgroup S is a subset of G such that S is itself a group

Example: rotation; reflection symmetry of an equilateral triangle

E : do nothing
A, B, C : reflect about axis
D: rotate cw by $2 \pi / 3\left(120^{\circ}\right)$
F: rotate ccu by $2 \pi / 3$

$$
\rightarrow A^{-1}=A, \cdots, D^{-1}=F, F^{-1}=D
$$

Group multiplication table:

	E	A	B	C	D	F	
	row column						
E	E	A	B	C	D	F	
A	A	E	D	F	B	C	
B	B	F	E	D	C	A	
C							
C	C	D	F	E	A	B	
D	D	C	A	B	F	E	
F	F	B	C	A	E	D	

Representations
Let $\Gamma\left(g_{i}\right)$ be the (matrix) representation of $g_{i} \in G$

$$
g_{i} \cdot g_{j}=g_{k} \rightarrow \Gamma\left(g_{i}\right) \cdot \Gamma\left(g_{j}\right)=\Gamma\left(g_{k}\right)
$$

$\Gamma(e)=\mathbb{1}$-specifically when is multiplication
We define the similarity transformation for any S as:

$$
\begin{aligned}
& \Gamma^{\prime}\left(g_{i}\right)=S^{-1} \Gamma\left(g_{i}\right) S \\
& \Gamma^{\prime}\left(g_{i}\right) \cdot \Gamma^{\prime}\left(g_{j}\right)=\Gamma^{\prime}\left(g_{i} \cdot g_{j}\right)
\end{aligned}
$$

Γ is reducible if $\exists S$ s.t. for $\Gamma^{\prime}\left(g_{i}\right)=S^{-1} \Gamma\left(g_{i}\right) S \forall g_{i} \in G, \Gamma^{\prime}$ is a "block matrix" with more then one block

$$
\Gamma_{\text {red }}^{\prime}=\left[\begin{array}{cc}
{\left[\Gamma^{(1)}\right]} & 0 \\
0 & {\left[\Gamma^{(2)}\right]}
\end{array}\right]
$$

Any Γ with $\operatorname{det} \Gamma \neq 0$ is similar to a unitary Γ.
Irreducible representations obey an or thogonality relation:

$$
\sum_{g \in G} \Gamma^{(i)}(g)_{\mu \nu}^{*} \Gamma^{(j)}(g)_{\alpha \beta}=\frac{h}{l_{i}} \delta_{i j} \delta_{\mu \alpha} \delta_{\nu \beta}
$$

$\rightarrow h$: order of group G (number of group elements)
$\ell_{i}:$ dimension of $\Gamma^{(i)}$

Dimensionality Theorem: $\quad \sum_{i \in i=r e p s} l_{i}{ }^{2}=h$
Classes
$\rightarrow g_{i}$ and g_{j} are called "conjugate" if $g_{i} g^{-1}=g_{j}$ for some $g \in G$
\rightarrow The set of all group elements conjugate to $\mathrm{gi}_{\mathrm{i}}=$ "class" of g_{i}
\rightarrow For an Abelion group, all elements are in their own class $g g_{i} g^{-1}=g g^{-1} g_{i}=e g_{i}=g_{i}$

Equilatoral triangle example - non-Abelion, with 3 classes:

$$
C_{1}=E, \quad C_{2}=A, B, C, \quad C_{3}=D, F
$$

Characters
The "character" is defined as: $\quad \chi^{(i)}(g)=\operatorname{Tr} r^{(i)}(g)$ for any representation $r^{(i)}$.
invariant under similarity transformations:

$$
\operatorname{Tr}\left(S^{-1} \Gamma^{(i)}(q) S\right)=\operatorname{Tr}\left(S S^{-1} \Gamma^{(i)}(q)\right)=\operatorname{Tr}\left(\Gamma^{(i)}(q)\right)
$$

\longrightarrow all elements in a class have the same character.
The or thogondity relation in terms of characters:

$$
\begin{aligned}
& \sum_{\substack{g \in G \\
\uparrow}} \chi^{(i)}(g) * \chi^{(i)}(q)=\sum_{\substack{k \in \text { classes } \\
\uparrow \\
\text { sum over group elements } \\
\text { sum over classes }}} \chi^{(i)}\left(C_{k}\right) * \chi^{(j)}\left(C_{k}\right) \underbrace{N_{k}}_{\begin{array}{c}
\text { size of } \\
\text { class } C_{k}
\end{array}}=h \delta_{i j} \\
&
\end{aligned}
$$

From this, we have: \#irr.reps. = classes \& so we know there are 3 ire. rep. for the Δ !
We can use this to help reduce representations Γ into their irreducible ports:

$$
\Gamma=\sum a_{i} \Gamma^{(i)} \rightarrow \text { not exactly a sum; forms a larger }
$$ block diagonal representation

$$
\begin{aligned}
& \sum_{k \in \text { classes }} \chi^{(i)}\left(C_{k}\right)^{*} \chi\left(C_{k}\right) N_{k} \\
&=\sum_{k} \chi^{(i)}\left(C_{k}\right)^{*} \sum_{j} a_{j} \operatorname{Tr}\left(\Gamma^{(j)}\right) N_{k} \\
&=h \delta_{i j} \\
& \rightarrow a_{i}=\frac{1}{h} \sum_{k \in \text { classes }} \chi^{(i)}\left(C_{k}\right)^{*} \chi\left(C_{k}\right) N_{k}
\end{aligned}
$$

Often, the characters $\chi^{(i)}\left(C_{k}\right)$ are displayed in a "character table."
\rightarrow rows: different ire. rep. $\Gamma^{(i)}$
\rightarrow columns: different classes C_{k}
\rightarrow entries: $\chi^{(i)} C_{k}$ For the triangle:

	C_{1}	$3 C_{2}$	$2 C_{3}$
$\Gamma^{(1)}$	1	1	1
$\Gamma^{(2)}$	1	-1	1
$\Gamma^{(3)}$	2	0	-1

\rightarrow rows are orthogonal when weighted by N_{k}
\rightarrow colum acre orthogonal

