Lecture 22-11/27
Renuever: Final posecitations $\square$
Tmielicie: - suggestion of topic liu person or via ewail): Wecluesolay
$\rightarrow$ Pusi doaft (in peses or via eurail) :
Th sext week
$\rightarrow$ Peseertcelic Tin, Dec 7,
10an- 2 pen
will provide lend
Sucia Cenher 309

Fimish froup theary for AHO queral

- basis fots ( $\hat{\text { a }}$ aigeustales)
- contriucons frorpos (splarical symin.)
- withoul \& with spin
- Basis functions

What does group theory teach us about the eigustates of ar Hamiltonicu?
Remember:
"Hamiltonian is symmetric nuder (operation) $\widehat{R} " \underline{=}$ $[\hat{H}, \widehat{R}]=0$
$\Rightarrow \hat{H}$ aud $\hat{R}$ can share a set of eigmstates. What are the eiferstates of $\hat{R}$ ?
$A$ : group of the Sols. Eg.
Each $g \in G$ lias associated a 30 rotalie, w/ matron

$$
\vec{r}^{\prime}=R_{q} \vec{r}
$$

$P_{g} f(\vec{r}) \equiv f\left(R_{g}^{-1} \vec{r}\right) \quad$ for $\quad R_{g}=\Gamma(g)$
Roo are isomorphic reposentations of $G$ if ar are looking only at 30 -rotation synmictry.
Example: rotation by $90^{\circ}$ around $\tilde{x}$ :

$$
\begin{array}{r}
\Rightarrow x^{\prime}=x ; y^{\prime}=z ; z^{\prime}=y=R_{g}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right) \\
\quad+P_{f} f(x, y, z)=f\left(R_{g}^{\prime} \vec{r}\right)=f(x,-z, y)
\end{array}
$$

$\left[H_{1}, P_{g}\right]=0 \Rightarrow P_{g}\left|\psi_{n}\right\rangle$ is also eigenfer
$H\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \quad$ with sane energy.
$\Rightarrow$ given one cigufot $\psi_{n}^{(k)}$, we can giuerate other $4_{\mathrm{n}}^{(\nu)}$ with all $P_{g}$ !
If His produce $\psi_{m}^{(k)} \Rightarrow$ degeneracy is "normal" otherwise, degeneracy is "accidental"
Example: upi,upyiupe - normal
up, us - accidental
(but: not accidental deginate undo Diraceg.!
noricul: $P_{g} \psi_{m}^{(k)}=\sum_{\nu=1}^{\ell_{m}} \psi_{m}^{(\nu)} \Gamma_{(g)_{\gamma k}}^{(n)}$
$\ell_{m}$ : degineracy of $E_{m}$
$\Gamma^{(a)}$ is $l_{a}$-dim rep.
$\Gamma^{(x)}$ is (can be) irreducible
4. $4_{n}^{(2)}$ orthonormal basis $\Leftrightarrow \Gamma^{(n)}$ unitary
$\Rightarrow$ The set of $l_{n}$ degenerate eigunfcts $4_{m}^{(3)}$ for eigenvalue $E_{n}$ form bass fats for $l_{n}$-diniensionde irred rep $\Gamma^{(m)}$ of Sahr. groups.

Trivial exkecsion:
Diffoint set $\psi_{n}^{(\nu)^{\prime}} \hat{=} \Gamma^{(a)^{\prime}}=S^{-1} \Gamma^{(a)} S$
Properties:
$\Rightarrow$ same space, equivalent irred rep.

- $n$ and $x, y$ (row, col vidias of Pins) are good 9 numbers".
- dimension of irred. reps gives all possible (normal) degeneracies.
- all eigenfct io/ diffeent $\{n, k, \nu\}$ are orthogonal.
- poturbation $H^{\prime}$ lifts degeneracies ift itchanges symin. group and dini of irred representation.

Defsi $4_{n}^{(\nu)}$ "trausformes accordnig $h_{0} \Gamma^{(n)}$. or $4_{n}^{(v)}$ "blongs to" $\Gamma^{(m)}$ or
the $4_{m}^{(\nu)}$ "ginerate" $\Gamma^{(m)}$

- How to form basis functions? $\varphi_{m}^{(v)}$

Remenber: $P_{g} \varphi_{m}^{(r)}=\sum_{k=1}^{\ell_{n}} \varphi_{n}^{(k)} \Gamma_{(y)_{k \nu}^{(m)}}$ multiply from left: $\sum_{g \in G} \Gamma^{(m)}(g)_{x^{\prime} \nu}$ )

$$
\begin{aligned}
& \Rightarrow \sum_{g \in G} \Gamma_{(g)_{k^{\prime},},}^{(m)} P_{g} \varphi_{m}^{(n)}=\frac{n}{l_{n}} \delta_{m m} \delta_{k k^{\prime}} \delta_{\nu y^{\prime}} \varphi_{m}^{(n)} \\
& \text { Corkogonality } \\
& \Rightarrow \text { defmi: } P_{k \gamma}^{(m)} \equiv \frac{l_{k}}{\hbar} \sum_{j=a} \Gamma^{m}(g)_{k v}^{*} P_{j} \\
& \Rightarrow S_{k \nu}^{(m)} \varphi_{n}^{(\eta)}=0 \text { unless } \xi=\nu \text {. if } \xi=\nu: S_{K \nu}^{m} \varphi_{n}^{(\nu)}=\varphi_{n}^{(k)}
\end{aligned}
$$

$\Rightarrow S_{\nu \nu}^{(m)}$ is profictor onto $\varphi_{m}^{(\nu)}$ !

$$
\Rightarrow S_{\nu r}^{(n)} \mp=f_{n}^{(v)} \propto \varphi_{m}^{(\nu)}
$$

Sup pryictor on 4 (m) (cau be any finction!
Then: $P_{k \nu}^{(n)}($ with $k \neq \nu)$ yild all "portners".
(Def: differnt $\psi_{n}^{(\nu)}$ are called portiess.)
Use diaracters misteal:
$S^{(m)}\left(\equiv \sum_{k=1}^{l_{n}} S_{k k}^{m)}\right)=\frac{l_{m}}{n} \sum_{q<c} X_{(y)}^{(n)} P_{\gamma} \quad$ praficts onto spaca of

$$
\rightarrow S^{(n)} \mp=f^{(n)}\left(\alpha \operatorname{span}\left(\varphi_{m}^{(\nu)}\right)\right)
$$

Example: $G=\left\{e, \sigma_{x}\right\}$ (msiror $\mathcal{L} \hat{x}$ )

|  | $e$ | $\sigma_{x}$ |
| :---: | :---: | :---: |
| $r^{60}$ | 1 | 1 |
| $r^{12}$ | 1 | -1 |

$$
\begin{aligned}
& P^{(1)}=\frac{2}{h} \sum_{g \in G} x^{(1)}(y) P_{g}=\frac{1}{2}\left(P_{e}+P_{\sigma_{x}}\right) \\
& P^{(2)}=\frac{1}{2}\left(P_{e}-P_{\sigma_{x}}\right) \\
& \text { any } T(\vec{r})=T(x, y, z) \\
& f^{(1) /(2)}(x, y, z)=\frac{1}{2}(F(x, y, z) \pm F(-x, y, z))
\end{aligned}
$$

orthogonial! (t normalize!
c) Representation + dearacters of continnous (rotation) grops - cyclic quaup: $a=\left\{a, a^{2}, \ldots, a^{m}=e\right\}$

Abelion $\rightarrow$ ouly 10 irred rep's

$$
\begin{aligned}
& \Gamma(a)^{n}=a^{n}=e=X_{(a)}^{(p)}=e^{2 \pi i \frac{p}{n}} \\
& \Gamma_{(a)}^{(n)}=X^{(p)}(a)=e^{2 \pi i \frac{n}{n} \quad, p-1, \ldots, n}(l=h) \\
& \text { Bloch theotem }
\end{aligned}
$$

periodic potential with k a-periols (ring or linear with periodic boundary acidikions)

$$
\begin{gathered}
P_{a} \psi(x)=\psi(x+a)=\Gamma_{(a)} \psi(x)=e^{i k a} \psi_{k}(x) \\
k=\frac{2 \pi p}{L} \\
\psi_{k}(x)=u_{k}(x) e^{i k x}
\end{gathered}
$$

wher $u_{k}(x+a)=u_{k}(x)$

- uifinite rotation ic $2 D$
(Î nifinite-order cyclic group)

$$
\Gamma^{(m)}(\varphi)=e^{i m \varphi}=x^{(m)}(\varphi)
$$

$$
\begin{aligned}
& 4 m(r, d, \varphi)=f(r, l) e^{i m \varphi} \\
& \Gamma^{(m)}(\pi) \stackrel{!}{=} \Gamma^{(m)}(-\pi)=D e^{\text {in } \pi} \stackrel{!}{=} e^{-i m \pi} \\
& \Rightarrow m=0, \pm 1, \pm ?, \ldots
\end{aligned}
$$

- 3D proper rolahore group SO (3) $\left(O^{+}(3)\right)$

On obvious representakori
$R(\alpha, \beta, \gamma)$ Ever angles

$$
\begin{aligned}
& R(\alpha, \beta, \gamma)=R_{z}(\alpha) R_{y}(\gamma) R_{z}(\gamma) \\
& R_{z}(\varphi)=\left(\begin{array}{ccc}
\cos \varphi & \operatorname{sic} \varphi & 0 \\
-\operatorname{si\varphi } & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right), R_{y}=\cdots \\
& \cdot R^{+} R=\mathbb{\pi} \quad \text { deft } R=1
\end{aligned}
$$

- not Abulia
- "three-parameter" group
- Basis finchors

We know that

$$
P_{R}\left(\alpha_{1} \beta_{1} \gamma\right) Y_{e m}(v, \varphi)=\sum_{m^{\prime}=-l}^{e} Y_{e m}(v, \varphi) D_{m i m}(\alpha, \beta, \gamma)
$$

with Y em spherical harmonics = basis finchbins and (1) ${ }^{(l)}(\alpha, \delta, \delta)=\Gamma^{(22+1)}:(2 l+1)$-dim irved rep
(These are listed mi tables)
"(1)" for "Darstelling" - due to Wigner)

- Rotations by sane angle aboul any axis are in same class!
(Proof: $R_{z^{\prime}}(\varphi)=R\left(z \rightarrow z^{\prime}\right) R_{z}(\varphi) R^{-1}\left(z \rightarrow z^{\prime}\right)$ )
- character of $\nabla^{(e)}(\varphi)$

$$
\chi^{(2 c+1)}(\varphi)=\frac{\sin \left(\left(l+\frac{1}{2}\right) \varphi\right)}{\sin \varphi / 2}
$$

Troof: Roluli axes by $-\alpha$ about $\hat{z}$ :

$$
\begin{aligned}
& P_{\alpha} Y_{l m}(2 l, \varphi) \equiv Y_{l m}(\ell l, \varphi-\alpha)=e^{i m \alpha} Y_{l m}(2 l, \varphi) \\
& \left.D^{(e)}(\alpha)=\binom{e^{-i l \alpha} e^{-i(c-1) \alpha}}{\ddots} ; e^{i l \alpha}\right) ; \chi^{(2 e+1)}(\alpha)=\sum_{m=-e}^{e} e^{i m \alpha}
\end{aligned}
$$

- These are the oily (odd-diu) irr rep's of SO (3) (proof: characters hane to be or thogoncel $1>$ neis $X(\alpha)$ also orthogorial to $X^{(2(1)}(\alpha)-X^{(2 c-1)}(\alpha)=2 \cos C \alpha$ $\Rightarrow X(\alpha)$ necds to be orkogonal to cas-Tourier saries: Rotations by $\alpha,-\alpha$ in same dass $\Rightarrow X(\alpha)=X(-\alpha) \Rightarrow$ If : can nuer be orthosenal to all cas-Fourier deries of - With spuir $s U(2)$ + double groups

Q: Even rep's for so (3)?
$D^{(j)}$ for half-inkege $j^{\prime}$ ?

$$
\Rightarrow X^{(\gamma)}(\alpha)=\frac{\sin \left(\left(j+\frac{1}{2}\right) \alpha\right)}{\sin \alpha, 2} \text { works! }
$$

But Y cm only for $\ell \in \mathbb{Z}$ !
$\Rightarrow$ use $\mid f$, m $\rangle$ as Gairs
( $\Rightarrow$ coribined angular \& spai wave furctions)

$$
\begin{aligned}
& \left.P_{R}|j, m\rangle=\sum_{m^{\prime}=j}^{i} i j, m^{\prime}\right\rangle D_{R}^{(j) m} m \\
& X^{((j+1)}(\alpha+2 \pi)=\frac{\sin \left(\left(j^{\prime}+\frac{1}{2}\right)(\alpha+2 n)\right)}{\sin \frac{\alpha^{2} 2 n}{2}}=(-1)^{2 j^{\prime}} X^{\left(2 j^{\prime}+r\right)}(\alpha)
\end{aligned}
$$

$=0$ for half niteger fi the Hilbert space is Raken into itself ouely by 4 - rohation!
Rewedy: defmi $r \neq e, r^{2}=e$ as uew group elemen!
$\Rightarrow$ group doubles, i.e., for each group clement $g$, there now also exists an rag!

$$
\Rightarrow G^{\prime}=\left\{e, g_{2}, g_{31}-g_{k}, r, r \cdot g_{2} \ldots, r \cdot g_{4}\right\}
$$

is called "doreble group" of $a_{2}$.
$S U(2)$ is double group of SO (3)
Remark: For finite groups there are double as many group elements, but not necessaily double as many cases: if $O$ us $O^{\prime}$

- Mapping between SO(3), SU(2)

SO (3) ar all proper rolatias ni SD real space SUL2) are all proper rotation $\therefore 2 D$ complex space $\rightarrow 0$ mitary ices $U$ with det $u=1$ is isomorphic rep. Ing $x, y, z$ can be mapped to 21 traceless Hermitian erraGit:
$X=\left(\begin{array}{cc}z & x+y \\ x-i y & -z\end{array}\right) \quad \begin{aligned} & \text { is most general } \\ & \text { such nation }\end{aligned}$
One general way to work $U$ :

$$
u=e^{i \vec{\sigma} \cdot \vec{\varphi} / 2}=\cos \frac{\varphi}{2} \mathbb{H}+i \vec{\varphi} \cdot \vec{\sigma} \sin \frac{\varphi}{2}
$$

$\vec{\varphi}:|\vec{\varphi}|$ is angle, $\hat{\vec{\varphi}}$ is axis of vol.
$\vec{\nabla}$ : vector of Pauli unces.

$$
R^{\top} \stackrel{\rightharpoonup}{r}=U^{+} X U
$$

but : both $U$ and - $U$ give same rotation $R$ !

$$
\left.e-g \cdot U_{z}(2 \pi)=\binom{e^{-i \pi}}{0 e^{i \pi}}=-\mathbb{L}\right)
$$

- Direct - proaluca groups
often: complete symmelog can be broken up nito dishrict operations, (1) and (2), where (1) and (2)
Example: $\mathrm{H}_{2}$ (1) exdiange mobers comute.
(2) exchange e-
(3) rotahing motecule
can be wriden as "direct product group"

$$
\begin{aligned}
& G_{1}=\left\{e, a_{2}, \ldots a_{h}\right\}, G_{2}=\left\{e, b_{2}, \ldots, b_{k}\right\} \\
& G^{\prime}=G_{1} \times G_{2}=\left\{e, a_{1} \ldots, b_{1} \ldots a, b_{1}, a_{1} b_{2} \ldots\right\}
\end{aligned}
$$

order: $h: k, \Gamma_{1, i j} \cdot \Gamma_{2, l m} \equiv\left(\Gamma_{1} x \Gamma_{2}\right)_{i j}<m$

$$
x_{12} \equiv x_{1} \cdot x_{2}, \ldots
$$

exaple: $G_{1}$ (equilatiol wiagle): "(1)" (in ay-plane)

$G_{2}:$ invrating aloing $\mathfrak{\varepsilon} \rho=\{e, \sigma\}$

| $\mathcal{L}$ | $e \sigma_{2}$ |
| :--- | :--- |
| $\Gamma^{(10)}$ | 1 |
| $\Gamma^{(0)}$ | 1 |

$$
G_{1} \times G_{2}=D_{3} \times \mathcal{J}=D_{s h}
$$

| $D_{3 n}$ | $e$ | $2 C_{3}$ | $3 \sigma$ | $\sigma_{n}$ | $2 \sigma_{n} C_{3}$ | $3 \sigma_{n} \sigma_{i}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Gamma^{(3)}$ | 1 | 1 | 1 | 1 | 1 | 1 |
| $\Gamma^{(2)}$ | 1 | 1 | -1 | 1 | 1 | -1 |
| $\Gamma^{(3)}$ | 2 | -1 | 0 | 2 | -1 | 0 |
| $\Gamma^{(n)}$ | 1 | 1 | 1 | -1 | -1 | -1 |
|  | 1 | 1 | -1 | -1 | -1 | 1 |
|  | 2 | -1 | 0 | -2 | 1 | 0 |

- Direct product representation
(within a group: e.g. $2 e^{-}$mi the)
$\Gamma^{(i)}, \Gamma^{(j)}$ rep's of same graup

$$
\begin{array}{rl}
\Gamma^{(i)} \otimes \Gamma^{(i)} \Rightarrow ? & X=\chi^{(i)} \cdot X^{(j)} \\
\Gamma & =\Gamma^{(i)} \otimes \Gamma^{(j)}
\end{array}=\sum_{k i r i} a_{i j k} \Gamma^{(k)} . X^{(k)} .
$$

d) Nomendature : irred rep's for ponit groups
"nouit groups": 32 groups of crystal symin.
two tgpes: 1) one main axis
2) hiple symme $(0, T)$
classes: $C_{j}: j$-fold symin about pricipal axis
$C_{j}{ }^{\prime(1)}$ :... - dant other casis
$\sigma$ $\because$ reflection
$i$ : inversiou
irred. rep.

$$
\begin{aligned}
& A: D D ; X\left(C_{i}\right)=1 \\
& B: 1 D ; X\left(C_{1}\right)=-1 \\
& E: 2 D \\
& T: 3 D
\end{aligned}
$$

(3D is highest diun for irred rep's in 32 porit qroups!' (cf. level sobleure xu centos!)

Sec. 4-31
PHYSICAL APPLICATIONS OF GROUP THEORY
Consider, for example, the group $C_{2 v}$. Its character table is:

| $C_{2 v}$ |  |  |  | $E$ | $C_{2}$ | $\sigma_{v}$ |
| :---: | :--- | :--- | ---: | ---: | ---: | ---: |
| $x^{2}, y^{2}, z^{2}$ | $z$ | $A_{1}$ | 1 | 1 | 1 | $\sigma_{v}^{\prime}$ |
| $x y$ | $R_{z}$ | $A_{2}$ | 1 | 1 | -1 | -1 |
| $x z$ | $R_{y 9} x$ | $B_{1}$ | 1 | -1 | 1 | -1 |
| $y z$ | $\mathbb{R}_{x} y$ | $B_{2}$ | 1 | -1 | -1 | 1 |

Our notation here is such that $\sigma_{v}$ is reflection in the $x z$ plane and $\sigma_{v}^{\prime}$ is reflection in the $y z$ plane. Then we can write out symbolically the effect of each of these operations (or its inverse, which is the same in this example) on the three coordinate functions as follows:
$P_{E}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \quad P_{C_{2}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-x \\ -y \\ z\end{array}\right) \quad P_{\sigma_{v}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x \\ -y \\ z\end{array}\right) P_{\sigma_{v}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-x \\ y \\ z\end{array}\right)$
Comparing the results with the character table, and using the fact that $\chi^{(i)}(\mathbb{R})=\Gamma^{(i)}(R)$ for a one-dimensional representation, we have, for example,

$$
P_{C_{2}} x=\Gamma^{\left(B_{1}\right)}\left(C_{2}\right) x
$$

or more generally

$$
P_{R 2} x=\Gamma^{\left(B_{1}\right)}(R) x
$$

Similarly,

$$
\begin{aligned}
& P_{R} y=\Gamma^{\left(B_{2}\right)}(R) y \\
& P_{R} z=\Gamma^{\left(A_{1}\right)}(R) z
\end{aligned}
$$

and
We summarize these results by saying that, under the group $C_{2 v}, x$ transforms according to $B_{1}, y$ according to $B_{2}$, and $z$ according to $A_{1}$. From these results it follows that $x y$ transforms according to $B_{1} \times B_{2}=A_{2}$, etc.
basis fat: in graup tables:
lniear + quadiatic, combinadions

$$
x, y, z, x^{2}, \ldots, x^{2}+y^{2},-x y, \ldots
$$

$R_{r,} R_{y}, R_{z}+$ corub's axial, $\therefore e$ evru vuder i (nversion)
(ser tebble previons page)
e) Crystal field splitming:

What is the effect of Covering syminetry?
Example: 0 : proper rolations of $\quad(h=24)$
(Table9 ker....)



Sec. 4-31
PHYSICAL APPLICATIONS OF GROUP THEORY
Consider, for example, the group $C_{2 v}$. Its character table is:

| $C_{2 v}$ |  |  |  | $E$ | $C_{2}$ | $\sigma_{v}$ |
| :---: | :--- | :--- | ---: | ---: | ---: | ---: |
| $x^{2}, y^{2}, z^{2}$ | $z$ | $A_{1}$ | 1 | 1 | 1 | $\sigma_{v}^{\prime}$ |
| $x y$ | $R_{z}$ | $A_{2}$ | 1 | 1 | -1 | -1 |
| $x z$ | $R_{y 9} x$ | $B_{1}$ | 1 | -1 | 1 | -1 |
| $y z$ | $\mathbb{R}_{x} y$ | $B_{2}$ | 1 | -1 | -1 | 1 |

Our notation here is such that $\sigma_{v}$ is reflection in the $x z$ plane and $\sigma_{v}^{\prime}$ is reflection in the $y z$ plane. Then we can write out symbolically the effect of each of these operations (or its inverse, which is the same in this example) on the three coordinate functions as follows:
$P_{E}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \quad P_{C_{2}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-x \\ -y \\ z\end{array}\right) \quad P_{\sigma_{v}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x \\ -y \\ z\end{array}\right) P_{\sigma_{v}}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}-x \\ y \\ z\end{array}\right)$
Comparing the results with the character table, and using the fact that $\chi^{(i)}(\mathbb{R})=\Gamma^{(i)}(R)$ for a one-dimensional representation, we have, for example,

$$
P_{C_{2}} x=\Gamma^{\left(B_{1}\right)}\left(C_{2}\right) x
$$

or more generally

$$
P_{R 2} x=\Gamma^{\left(B_{1}\right)}(R) x
$$

Similarly,

$$
\begin{aligned}
& P_{R} y=\Gamma^{\left(B_{2}\right)}(R) y \\
& P_{R} z=\Gamma^{\left(A_{1}\right)}(R) z
\end{aligned}
$$

and
We summarize these results by saying that, under the group $C_{2 v}, x$ transforms according to $B_{1}, y$ according to $B_{2}$, and $z$ according to $A_{1}$. From these results it follows that $x y$ transforms according to $B_{1} \times B_{2}=A_{2}$, etc.

