Lecture 22 - 11/27 Remember 1 Final presentations & - suggestion of topic luiperson or via mail): Wechnesday Timeline: + fust claft (i perer The ment week or via ereail)! - Resentation Thur, Dec 7, 10 ann - 2 pm will provide lend Science Center 309 AHO queal Finish from theory for - basis fets (= eigenstates) (spherical symm.) continuous Groups - without & with spin

· Basis functions What does promp theory teach is about the eigenstates of a Hamiltonian? Remembes : Hamiltonian is symmetric uncles (operation) \hat{R}'' $[\hat{H}, \hat{R}] = 0$ => \widehat{H} and \widehat{X} can share a set of eigenstates. What we the eigenstakes of \widehat{X} ? a: group of the Sols. Eq. Each g & Gr has associated a 30 votable, w/ malax r' = Rar for Ry= r(g) $P_{q} f(\vec{r}) = f(R_{q}'\vec{r})$ Ry are isomorphic representations of G if we are looking only at 30 - rotation symmetry. Exapple: rotation by 90° around \tilde{x} : =) x' = x; y' = 2; z' = -y: $R_g: \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & -1 \end{pmatrix}$ $- P_{f}(x,y,z) = f(R_{g}'r) = f(x,-z,y)$

 $[H, P_{g}] = 0 = 0$ Palyn) is also eigenfat $H(y_n) = E_n(y_n)$ with same energy. =) given one eigenfat 4 " , we can querate other 4 n with all Py! If their produce you => degeneracy is "normal" otherwise, depuneracy is "accidental" Exaple: up, upy, up2 - normal mp, us - accidental (but: not accidental/ degenate undes Dirac eg.!) $\operatorname{motional}: P_{q} \mathcal{Y}_{m}^{(\kappa)} = \sum_{n=1}^{c_{m}} \mathcal{Y}_{n}^{(m)} \mathcal{T}_{q}^{(m)}$ l_n: degeneracy of En F'in is la - dur. sep. ["" is (can be) irreducible 4 4" orthonormal basis AD 1" milary -> The set of la degenerate eigenfets 4m for eigenvalue En form basis fats for La - dimensional issed up I'm of Schr. group. Trivial extension: Diffornt set 4 (2) 2 F' (2) = S' F' (2) S => same space, <u>convalent</u> irred. up. Propertien: · n and k. v l row, col. idices of I'ms) are good 9. numbers. · dimension of irred. reps. gives all possible (normal) définéracies.

-all eigenfet 10/ difforent { M. K. ~} are or Kogonal. · poturbation H' lifts degeneracies iff it changes symme group and duri. of isred representation. Defsi yn "transformes according to I'm" or 4^(v) blongs to r^(m) or the 4^(v) generate r^(m) · How to form Basis Functions? qu' Remembes: Pg (pn = Z of (k) Fins) unliply from left: Z p(m) # geg (g) w'y' = $D \sum_{q \in G} \Gamma^{(m)} + P_{q} \varphi^{(v)} = \frac{h}{\ell_{m}} \delta_{mm} \delta_{kk'} \delta_{vv'} \varphi^{(h)}$ Corkegonality Heorem! = o define: $\mathcal{B}_{\mu\nu}^{(m)} \equiv \frac{l_m}{h} \sum_{p \in \mathcal{G}} \mathcal{F}_{(\mathcal{G})}^{(m)*} \mathcal{P}_{q}$ = $S_{kv}^{(m)} q_{m}^{(3)} = O$ unless $\xi = v$. If $\xi = v$: $S_{kv}^{(v)} q_{m}^{(v)} = q_{m}^{(k)}$ = $S_{vv}^{(m)}$ is projector onto $q_{m}^{(v)}$. $= D \ \mathcal{F}_{yy}^{(n)} \mathcal{F} = f_n^{(v)} \propto \mathcal{G}_n^{(v)} \qquad \begin{array}{c} \mathcal{S}_{yy}^{(n)} & projector \ on \ \mathcal{G}_n^{(v)} & (cau \ be \ constructed) \end{array}$ any finichion! Then: Pro (with \$\$ \$) yield all "postnes (Def: diffornt 4[°], are called postnes.) Use characters nistead: $\mathcal{F}^{(m)}\left(=\sum_{k=1}^{lm}\mathcal{F}_{kk}^{(m)}\right)=\frac{lm}{h}\sum_{g\in G}\mathcal{X}^{(m)}_{(g)}\mathcal{P}_{g}$ projects onto space of Time, En $\rightarrow S^{(m)} \mp = f^{(m)} (\alpha \text{ span} (\varphi_{m}^{(v)}))$

Example: G = Ee, G, J (miror L?)
$\frac{\mathcal{C}}{\mathcal{F}^{(0)}}$
$\frac{1}{r^{\alpha}} = \frac{1}{r^{\alpha}} = $
$\mathcal{B}^{(1)} = \frac{\mathcal{E}}{\mathcal{L}} \sum_{g \in \mathcal{G}} \mathcal{V}^{(2)}_{eq} \mathcal{P}_{g} = \frac{1}{\mathcal{L}} \left(\mathcal{P}_{e} + \mathcal{P}_{\sigma_{r}} \right)$
$\mathcal{F}^{(2)} = \left[\frac{1}{2} \left(\mathcal{P}_{e} - \mathcal{P}_{G_{n}} \right) \right]$
$any + (\vec{r}) = + (x, y, 2)$
$f^{(0)(2)}(x, y, z) = \frac{1}{2}(F(x, y, z) \pm F(-x, y, z))$
orthogonal! La mornicelize?
c) Representation + characters of continuous (rotation) groups
- cyclic group: $G = \{a, a^2, \dots, a^m = e\}$
Melian =13 only 1D isred. rep's
$\Gamma(\alpha) = \alpha^{m} = c = c = \chi(\alpha) = c^{2\pi i \frac{m}{m}}$
$ [c_{\alpha}] = \chi^{(p)}(\alpha) = e^{2\pi i \frac{p}{n}}, p = l_{\alpha-p} n $
- Block theotem (=h)
periodic potential with k a-periods (ming or linear
with peroclic boundary coreclibious)
$P_{\alpha} \varphi(x) = \varphi(x + \alpha) = \Gamma(\alpha) \varphi(x) = e^{ik\alpha} \varphi(x)$
$k = \frac{2\pi p}{L}$
$\mathcal{Y}_{\mathcal{L}}(\mathcal{X}) = \mathcal{U}_{\mathcal{L}}(\mathcal{X}) e^{i\mathcal{L}}$
where $u_{k}(x + \alpha) = u_{k}(x)$
(3 · Cila arala a co
(- upune - orace cyclic group)
$(\varphi) = (\varphi) = $

 $4m(r, d, q) = f(r, d) e^{imq}$ $\Gamma^{(m)}(TT) = \Gamma^{(m)}(-TT) = 0 e^{imT} = e^{-imT}$ => $m = 0, \pm 1, \pm 2, \dots$ 3D prope rolation group SO(3) (0(3)) Om devious representation, R(x, g, z) Eules augles Ria, B, f) = Rzus Ry (p) Rz (8) $R_{2}(\varphi) = \begin{pmatrix} cosy & hig & 0\\ -hig & cosy & 0\\ 0 & 0 & 1 \end{pmatrix}, R_{y} =$ • $R^T R = I$ det R = 1not Abelian · "three - parameter group · Basis functions - Ochnikon for Dies We know black PR (d, p.8) Yem (d, q) = Z Yem' (d, q) Dmin (d, p.8) with Yem spherical harmonics = basis functions and D'es (x, B, 8) = 1" (2(+1) - chin irred. rep (These are listed in tables) "D" for "Darskellung" - due to Wigner) Rotations by same angle about any axis are same class! in R(2-2') R2(4) R(2+2')) (Proof: Rz. 14) P · character 5 of D'er (q) $\chi^{(2\ell+1)}(\varphi) = \frac{\sin((\ell+\frac{1}{2})\varphi)}{\sin \theta_{\ell^2}}$

7 roof: Robalie axes by - a about 2: $\begin{array}{l} \mathcal{P}_{\alpha} \quad \forall em \ (cl, \varphi) \ \equiv \ \forall em \ (cl, \varphi) \ = \ c^{im\alpha} \quad \forall em \ (cl, \varphi) \\ \mathcal{D}^{(e)}_{(\alpha)} \ = \ \begin{pmatrix} e^{-ie\alpha} \\ e^{-i(c-i)\alpha} \\ \vdots \\ e^{-ie\alpha} \end{pmatrix} \quad \chi^{(2e+i)}_{(\alpha)} \ = \ \begin{array}{c} e^{im\alpha} \\ e^{im\alpha} \\ m^{inc} \end{array} \end{array}$ · These are the only (odd - dim) irr. rep's of SO(3) (proof: draracters have to be orthogonal =1) new X (22) also orthogonal to X (22,1) => X (2) melds to be orthogonal to cas- Tourier series! Rotations by x, -x in same class => X(x) = X(-x) =) of: can neves be orthogonal to all an-Fourier series ? - With spini SU(2) + double groups Q: Even rep's for SO(3)? D'1' for half - intege j? $= \sum \chi'^{(1)}(\alpha) = \frac{\sin\left(\left(j + \frac{1}{2}\right)\alpha\right)}{\sin^{2}\alpha_{12}}$ works land a second But Yem only for REZ! => use 1j, m> as Basis (=) combined angular & spin wave functions) $P_{R} \mid j, m \rangle = \sum_{m'=1}^{2} \mid j, m' \rangle D_{R} m'm$ $\chi^{(4_1+1)}(\chi+2\pi) = \frac{gm((j+\frac{j}{2})(\chi+2\pi))}{gm(\chi+2\pi)} = (-1)^{2j}\chi^{(2_j+r)}(\chi)$ =0 for half - integer f; the Hilbert Space is taken into itself only by 477 - rotation! Remedy: define r + C, r² = C as now group cleme!!

= 2 group doubles, i.e., for each group clement g, there
now also exists an rg!
is called "Nouble group" of G
SU(b) is double group of SO(3)
Remark ; For Guite groups there are double as many
group clements, but not necessity double as many
classes : cf O vs O'
· Mapping between SO(3), SU(2)
SO(3) are all proper rolations in 3D real space
SULL2) are all proper rotations in 2D complex space
>0 untary mes M with det M=1 is isomorphic Kp.
ang x, y, 2 can be mapped to 20 traceless
Nermhaen mars.
X = (2 is most general x-iy - 2) such mahr
One gue al way to write h:
$\mathcal{U} = e^{i\vec{\sigma} \cdot \vec{q}/2} = \cos \frac{d}{2} \mathcal{I} + i\vec{q} \cdot \vec{\sigma} \sin \frac{d}{k}$
q: l'ql is angle, q is axis of vot.
5: vector of Pauli mes.
$R' \neq R \neq U^{\dagger} \times U$
but : both U and - U give same votation R!
$e-q$. $\mathcal{U}_{\varepsilon}(2\pi) = \begin{pmatrix} e & e^{i\pi} \end{pmatrix} = -\mathcal{U} \end{pmatrix}$

- Direct - product groups often: complete symmetry can be broken up vito district operations, O and S, where O and O comme Example: H2 O exchange protoris O exchange e 3 rotating mateule can be writen as "direct product group" $G_{1} = \xi e_{1} + \alpha_{2} + \cdots + \xi_{r} + G_{2} = \xi e_{1} + \xi_{2} + \cdots + \xi_{k}$ $G_{1} = G_{1} \times G_{2} = \xi e_{1} + \alpha_{r} + \beta_{r} - \alpha_{r} + \beta_{r} + \alpha_{r} + \beta_{r} - \xi$ order: h.k., Frij Felm = (F. x Te)ijlan $\chi_{i2} = \chi_{i} \cdot \chi_{2} ,$ exaple: G. (équilateral briegle): "D. (in 29 - plane) $D_{31} e 2C_{3} 36;$ $[7^{(2)}]$ 1 1 $[7^{(3)}]$ 2 -1 mirroring along 2 I = {c, o} $\begin{array}{c|c} \mathcal{J} & \mathcal{E} & \mathcal{G}_{L} \\ \hline \mathcal{F}^{(1)} & \mathcal{I} & (\\ \hline \mathcal{F}^{(2)} & \mathcal{I} & - (\end{array} \end{array}$ $G_1 \times G_2 = \mathcal{D}_3 \times \mathcal{J} = \mathcal{D}_{sh} \quad \Delta$ Dan e 2C3 30 Gr 201C3 30,0; T " and the second terms of the second terms of the second second second second second second second second second ۲°) and the second second second provide the second 厂(3) 7(4) a har a sa h - . **(** - . a **|** a − a − **|** a | a − .2. -1 0 1 . . 0 -2

Direct - product representation (within a group: e.g. 20 in the) I''', I''' rep's of sauce group Γ ··· & Γ ··· > => ? × = × ··· , × ··> $\Gamma = \Gamma^{(i)} \Theta \Gamma^{(i)} = \sum_{k \in G} a_{ik} \Gamma^{(k)}$ $\chi = \frac{Z}{h} \frac{Z}{q^{\alpha}} \chi^{\alpha} \chi^{\alpha$ <mark>.</mark> = L Eldasses Ne X(E) X(E) X(E) d) Nomenderture : irred. rep's for point groups "Homit groups": 32 groups of crystal symme. two types: 1) one main asis 2) high symm. (0, T) classes: Ci : j-fold symme about principal axis Ci - " - , abant other aris 5 : réflection i inversion irred. up. $\chi(C_i) = 1$ A:D. $\mathcal{B}: \mathcal{D}; \mathcal{X}(\mathcal{C},) = -1$ E: 20 T: 3D (3D is highest dim. for irred. rep's in 32 point groups! Icf. level scheme XV centers!)

= × ample :

Sec. 4-3]

nsider, for	example, the	e group C_2	w. Its c	haracter ta	ble is:	i.
۵۳٬۳۳۳٬۵۵٬۵۵۵٬۵۵۵٬۵۵۲٬۵۶۲٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬	C _{2v}	· · · · · · · · · · · · · · · · · · ·	E	C_2	σ_v	σ'_v
x^2, y^2, z^2	Z	A_1	1	I	1	1
xy	R_{z}	A_2	Arread		1	-1
XZ	R_y, x	B_1	-	40mm/m	ł.	1
yz 🛛	R_{x}, y	B_2	-	[1	Vinterof

Our notation here is such that σ_v is reflection in the xz plane and σ'_v is reflection in the yz plane. Then we can write out symbolically the effect of each of these operations (or its inverse, which is the same in this example) on the three coordinate functions as follows:

$$P_E\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\y\\z\end{pmatrix} P_{C_2}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-x\\-y\\z\end{pmatrix} P_{\sigma_v}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\-y\\z\end{pmatrix} P_{\sigma_{v'}}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-x\\y\\z\end{pmatrix}$$

Comparing the results with the character table, and using the fact that $\chi^{(i)}(R) = \Gamma^{(i)}(R)$ for a one-dimensional representation, we have, for example,

	$P_{C_2}x =$	$\Gamma^{(B_1)}(C_2)x$
or more generally	$P_R x =$	$\Gamma^{(B_1)}(R)x$
Similarly,	$P_R y =$	$\Gamma^{(B_2)}(R)y$
and	$P_R z =$	$\Gamma^{(A_1)}(R)z$

We summarize these results by saying that, under the group C_{2v} , x transforms according to B_1 , y according to B_2 , and z according to A_1 . From these results it follows that xy transforms according to $B_1 \times B_2 = A_2$, etc.

Basis fat: in group tables: luiear + quadrahic, combina tions ×, y, 2, ×, ..., × + y 2, - , × y, .. Rr. Ry, R2 + corab's : arial, i.e. erre under i (noversion) (republe previous page) e) Crystal field splitting: What is the effect of lowering symmetry ? Example: O : proper rotations of (h=24) . Tables wer

6C4 . $6C_2$ ဒ္မိင္ခ် င္မီဒီ [...] 3 77975° 5 0 8 ò 2 Г2 11/2 12

mehan

L = 0, 1, 4, 5,= 2, 3, 6, 7,= 2, 5, . . L = 0, 3, .I, 4,]] 1 - $\chi(C_2) = \chi(\pi) = (-1)^L$ || $\frac{2\pi}{3}$ 513 $\chi(C_4) = \chi$ $\chi(C_3) = \chi$

Cr	rystal fild	- splitting - spherically
"	Synn	
6C4	tunney provy provy prove	and and state
		XL a s hat redu redu rate rate
		(\mathcal{C}_k) t by t by t's ti sener gene
C 65	terror transf total terror	$k\chi_i(k\chi_i(k\chi_i(k\chi_i)))$
60		$O_1 r$ not non old non rate
		-1 Z al. ce 1 z is i is i sitic treef
		(24) (24) (24) (24) (24) (24) (24) (24) (24)
$3C_2$	Americ Americ Americ America	$= \begin{pmatrix} (L & \\ rs. \\ (L & \\ and \\ riply \\ split \\ riply $
		a_i acte acte acte acte acte cate cate cate
		/ on P st actu wofo G st d tv
ů	-00	ere he only only a , a , a , b , a , b , b , a ,
00		wh of tho of tho fit is into into into into into state
		f on f on f of
		Γ_i it sin arise arise aris
E	- 5 5 6.	$\sum_{i=1}^{n} a_i$ omp D_2
		$ \begin{array}{c} \blacksquare \\ \blacksquare $
		D_L D_L
0	°° 4° 4° 4° 4°	
Con	upal clarac	tos of clanes

hal Pild spli 1 -1001 heri'rcelly ♣ CL

= × ample :

Sec. 4-3]

nsider, for	example, the	e group C_2	w. Its c	haracter ta	ble is:	i.
۵۳٬۳۳۳٬۵۵٬۵۵۵٬۵۵۵٬۵۵۲٬۵۶۲٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬۵۶٬	C _{2v}	· · · · · · · · · · · · · · · · · · ·	E	C_2	σ_v	σ'_v
x^2, y^2, z^2	Z	A_1	1	I	1	1
xy	R_{z}	A_2	Arread		1	-1
XZ	R_y, x	B_1	-	40mm/m	ł.	1
yz 🛛	R_{x}, y	B_2		[1	Vinterof

Our notation here is such that σ_v is reflection in the xz plane and σ'_v is reflection in the yz plane. Then we can write out symbolically the effect of each of these operations (or its inverse, which is the same in this example) on the three coordinate functions as follows:

$$P_E\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\y\\z\end{pmatrix} P_{C_2}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-x\\-y\\z\end{pmatrix} P_{\sigma_v}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}x\\-y\\z\end{pmatrix} P_{\sigma_{v'}}\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-x\\y\\z\end{pmatrix}$$

Comparing the results with the character table, and using the fact that $\chi^{(i)}(R) = \Gamma^{(i)}(R)$ for a one-dimensional representation, we have, for example,

	$P_{C_2}x =$	$\Gamma^{(B_1)}(C_2)x$
or more generally	$P_R x =$	$\Gamma^{(B_1)}(R)x$
Similarly,	$P_R y =$	$\Gamma^{(B_2)}(R)y$
and	$P_{R}z =$	$\Gamma^{(A_1)}(R)z$

We summarize these results by saying that, under the group C_{2v} , x transforms according to B_1 , y according to B_2 , and z according to A_1 . From these results it follows that xy transforms according to $B_1 \times B_2 = A_2$, etc.