## Solutions for problem set 11

Problem 1. Crystal field splitting Here is the example of the proper group table (i.e., no inversions) for a equilateral triangular pyramid (i.e, the basis is an equilateral triangle, but the height is arbitrary, such that the result is not tetrahedral) - which is actually the same as the group for even permutations of 3 elements.

|  | $E$ | $C_{3}$ | $C_{3}^{2}$ |
| :---: | :---: | :---: | :---: |
| $\Gamma^{(1)}$ | 1 | 1 | 1 |
| $\Gamma^{(2)}$ | 1 | $e^{i \frac{2 \pi}{3}}$ | $e^{i \frac{4 \pi}{3}}$ |
| $\Gamma^{(3)}$ | 1 | $e^{i \frac{4 \pi}{3}}$ | $e^{i \frac{2 \pi}{3}}$ |

a) Make a group table for $S O$ (3) and for the proper tetrahedral group $T$.
b) Use the orthogonality relation of the characters to find into which irreducible representations (i) the $D^{(\ell)}$ for $\ell=0,1,2,3$ split if the symmetry is lowered to $T$, and (i) into which irreducible representation the elements of $T$ split if the symmetry is lowered to that of an equilateral triangular pyramid. Hint: Start with $D^{(\ell)}=\sum_{i} a_{i} \Gamma^{(i)}$.
c) Why is part (b) important for diamond color centers?

## Solution

Problem 2. Selection rules Give a group theory argument along the lines of (see class)

$$
\left\langle\phi^{(\nu)}\right| V\left|\phi^{(\mu)}\right\rangle=0 \quad \text { iff } \quad \mathrm{a}_{\mathrm{V}, \nu \mu}=0
$$

to explain which transitions between $n s_{1 / 2}$ and $(n+1) p_{3 / 2}$ of hydrogen are allowed electric and magnetic dipole transitions, and how this changes if you put the $H$ atom into a diamond lattice without and with a strong electric field. Hint: For the first part, use the fact that $V_{\mathrm{el}}=-e \vec{r} \cdot \vec{E}$ and $V_{\mathrm{mgn}}=-\mu \vec{j} \cdot \vec{B}$, where $\vec{j}$ is any angular momentum vector.

## Solution

