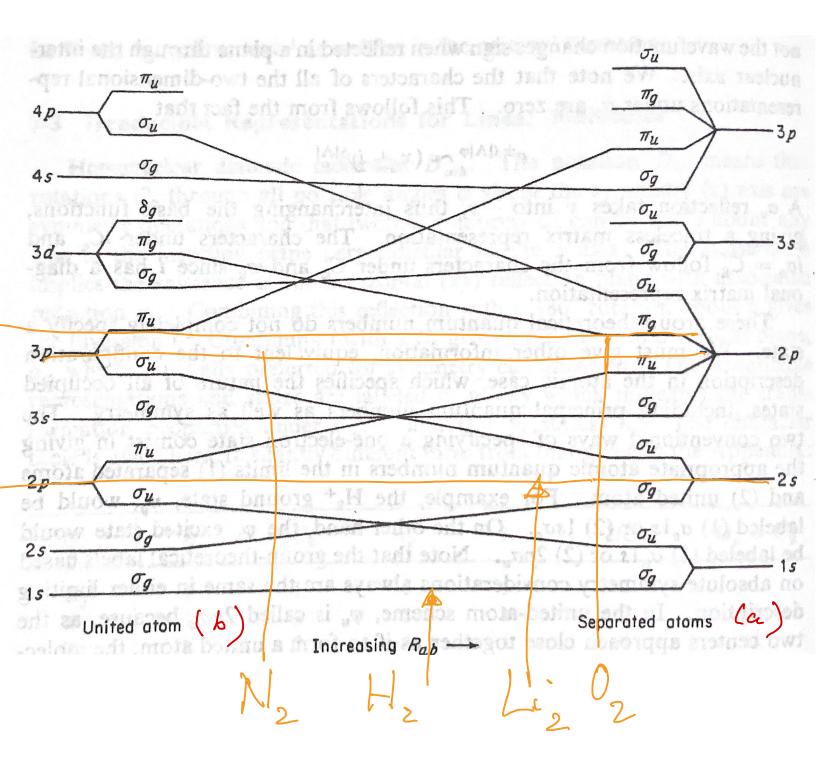
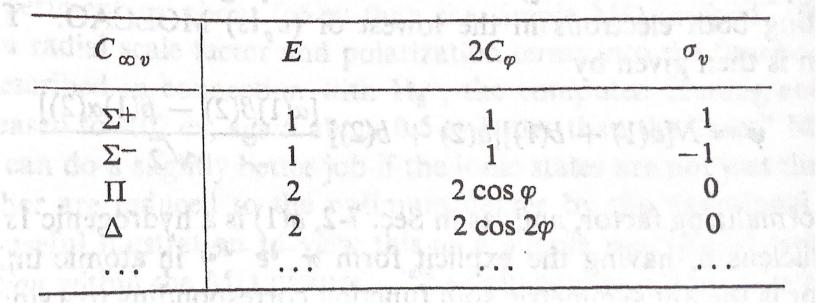

Lecture 24 - 12/4 Remember 1 Final poeseertations ? - suggestion of topic luiperson or via mail): Wechnesday Timeline: + fust chaft (i peser or via everil)! The ment week - Resentation Thur, Dec 7, 10 ann - 2 pm will provide lend Science Center 309 Topics Loday: Molecules

Energy levels of molecules

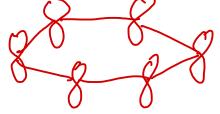

Symmetry in molecular physics no spherical synacce by = D lit unt good q. unuber but la, La along symmetry is! Examples by symmetry: (i) homonuclear diatomic molecules o-o Doch classes: e, Cos, Jo, i, (see touble mest page) What is accaloque of n (principal q, mule) in atoms. 2 limits: ca) n of separated atoms (b) n of combined atoms Example : Het (b) Ls 5g 4 5: q.s. : (a) 5 15 (b) 2p 5n (a) Juls Yab : porubued ob. was symmetry of p, second elec, & our clear nucleus cf. correlation diagram Example : H2 : q.s. spins opposed $\mathcal{L} = \mathcal{O} = \mathcal{O} \left(\mathcal{O}_{g} l_{S} \right), l_{S} \mathcal{O}_{g} = -\mathcal{O} \left(\mathcal{I}_{g} \right)^{2}$ - symm. mæ i, 60 Confijwalie tom (\cdot, \cdot)

Dooh


	Propert I	for and man	18th all de	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a the second state	
$D_{\infty h}$	E	$2C_{\varphi}$	σ_v	i	$2iC_{\varphi}$	$i\sigma_v = C'_2$
4 Σ+	1	1	(1)		1	1
Σ_{u}^{+}	anad h a "A	St. 1 1- X 1			teswoll_1a.b rie	maxim
\sum_{g}	to (1) Sh	1001 2.1 , 2001)	(-1)	A	1.7 1 tov. "Si	. CI-1-000
Σu	,ve (10,0)	= ,C 1baz /	+1)-	-1	note-1 max	ad loost
$\equiv \Pi_g$	igm 2.vite	$2\cos\varphi$	0	a0 2 tas	$2\cos\varphi$	maan 0
$\in \Pi_u$	in 2nby	$2\cos\varphi$	0	-2	$-2\cos\varphi$	
$ \leq \Delta_g $	uda ² an	$2\cos 2\varphi$	0	2	$2\cos 2\varphi$	
$\in \Delta_u$	a 67 2 2001	$2\cos 2\varphi$	0	-2	$-2\cos 2\varphi$	0
E ····					•••	10, 10, 1 1,129
· · · · · · · · · · · · · · · · · · ·	: gerac : unger : unger : even odel	le leven ade lodd mde Co) Z une) Z une	deri	YOLGE * YOR A	
	oll					
Ill A	71 a.K	2D (Ş)				

" correlation diagram

Example O2 (16 2) g.S. look only @ perhally : 20 in Tig (Ti, 2p) Hund's rule: S=1: 45° · 42 space opposig anjule moren ! 1=0 "3" = 2S+1 g': steurs 2000 Tig - : clicenges sign moles 50 sil diabourie heteronneles: Caro (= Cas * 5.) no parity / nivesion symmetry (=> no 'g' / 'u') $= D \sum_{ij}^{\pm} \frac{1}{2} \sum_{ij}^{ij} \frac{1}{2} \sum$ (table 3) (iii) <u>Connection of mol.</u> spatial symmetry function (Hricel Heory) Example : CoHe Beuzene Symmetry: Don (direct product groups of Do with On =D look only @ Do) Task: Build six orthonormal orbitals (belonging to rep's of Do) from six C 2s - orbitals



(using projection method for basis functions) Starting point: all symmetry operations and be described by the permutation rep. ("Ts") -(X(E): 6, Xig + E) - B: change / permute location of abours) pechace $\Gamma_s = \Gamma_1 + \Gamma_3 + \Gamma_5 + \Gamma_c$ 10 10 20 20 f see table of Use these & profiction operators in the space of superpositions of the six CLS orbitals (call them a, b, c, d, e, f): 4 ([,) = <u>atbrctdtetf</u> V6 (1+25) S: overlap nikegral for neighboring alows $\varphi_2(\Gamma_s) = \frac{\alpha - b + c - d + e - f}{\sqrt{6(1 - 2S)}}$ These are already six Basis fets $4_{3}(\Gamma_{5}) = \frac{a - b + cl - e}{\sqrt{4(l-S)}}$ 44 (Ts) = a + b - 2c + d + e - 2f V16 (1-S) =0 Done c $\mathcal{Y}_{5}\left(\Gamma_{6}\right) = \frac{a+b-cl-e}{\sqrt{4(1-S)}}$ $4c(\Gamma_c) = \frac{\alpha - b - 2c - d + c - 2f}{\sqrt{16(1-S)}}$ $Q = \langle a|H|a \rangle = \langle b|H|b \rangle = ...$ Energies : p = <a/ H16> = <6/14/2> =. (orvlap of non - weighboring neglected) $E(\Gamma_{1}) = \langle y_{1}|H|y_{1} \rangle = \frac{Q+2\beta}{1+2S}$ $E(\Gamma_3) = \frac{Q-2p}{1-2s}$ > see Fig. (5) $E(\Gamma_s) = \frac{Q \cdot s}{1 - s}$ $E(\Gamma_{c}) = \frac{Q+P}{I+S}$

Profiction: $\frac{\mathcal{L}_{I}}{\frac{1}{2}} \sum_{\mathcal{R}} \chi^{(i)}(\mathcal{R}) \cdot \mathcal{P}_{\mathcal{R}}$ $E \times \text{oumple}: \Gamma^{(3)}: \ell^{(3)} = 1, h = 6, \text{ use snigle} = 1 \text{ so orbital } \mu$ $= 0 \quad \mathfrak{F}^{(3)} = \frac{1}{12} \left(1 \cdot \alpha - C_2 \alpha + C_3 \alpha + C_3^2 \alpha - C_6 \alpha - C_6^5 \alpha + C_2 \alpha + C_2 \alpha + C_3 \alpha + C_3 \alpha + C_3 \alpha + C_4 \alpha$ F = d = C' a + C' a - C' a - C' a - C' a) = C' a + C' a) = C' a + C' a + C' a + C' a + C' a) = C' a + C' a) = C' a + C' a + C' a + C' a) = C' a + C $= \frac{1}{12}(a - d + c + e - b - f + a + c + e - d - f - b) = \frac{1}{6}(a - b + c - d + e - f)$ Ovelap : S = Jat bolv neighborneg

D_6	E	C_2	2 <i>C</i> ₃	2 <i>C</i> ₆	3C'2	3C ₂ "
$\Gamma_1(A_1)$	1 14 1 199	to sil ali	Hora i 1 ilsite	e anithen	erina n oda	
$\Gamma_2(A_2)$			a Disc. Aspite			-1
	hetral an	101. 1-1 .50%	isautalsw.	et se ÷l ceing	que el lini	-19
			all not use			
terrent di secondo di	1		di na 1 noi.	1	-	· · · · · · · · · · · · · · · · · · ·
manual of success the	A	A	ique <mark>ta esv</mark> i			
Γ_{S}					qui zintog g d. L <mark>2</mark> arit	
	10 0 0 0	inta	L'or its	HAH	renta	6 22
le ?	per		• 1 -			
C	of 6	por	mrs			
	1					

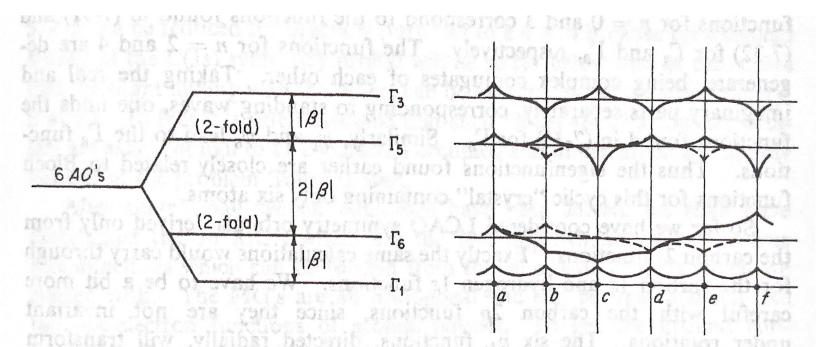


Fig. 7-7. Molecular-orbital energy-level scheme for benzene, with overlap integrals neglected. The form of the MO is also shown schematically in each case, a 1s atomic orbital being used for simplicity. In case of degeneracy, the two functions are distinguished by solid and dashed curves.

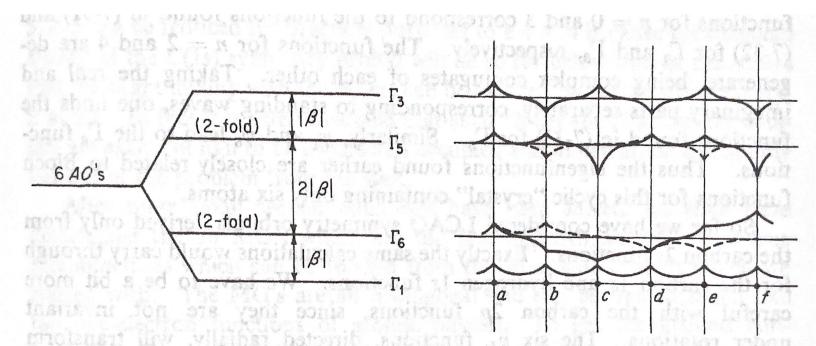


Fig. 7-7. Molecular-orbital energy-level scheme for benzene, with overlap integrals neglected. The form of the MO is also shown schematically in each case, a 1s atomic orbital being used for simplicity. In case of degeneracy, the two functions are distinguished by solid and dashed curves.