Lecture 9-10/4
4) Atonens
a) Spectrescopic notation

- atomi indeus (heavy) with cherge Z e surromided by z electrons
positively deargel ions: same exapt for scaling factor
negatively deciged iovis: boinal minch weaker
- Quanhiuce zuccibers!

each f has $2 j+1$ values of $r_{j}: r_{j}=-j,-\mid+1, \ldots$, L : orbital ang. mom., S : spin of e^{-}

$$
\vec{J}=\vec{L}+\vec{S}
$$

- atozus are designated by "term":

$$
(n)^{2 s+1} L_{1}
$$

wher S, J are woilen unmoically
"sharp" "pricipal" "diftuse" "fundamental"
exaples)

$$
3^{2} S_{1 / 2} \quad\left(1 \quad m=3, S=\frac{1}{2}, \quad L=0, \quad J=\frac{1}{2}\right)
$$

- or ni ens of "configuration" product of symbols $n l^{k}$ for k elections in ul-shell,
egg. Ca: $\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s\right) 3 d$
often only most significant
Las "term":

$$
D_{2}, D_{1,2,3}
$$

split Aifnifesountly mi every)
Tom is usually more nimpertont (it determines Gbavior of atom ni fills

- "Selection oules" \Rightarrow
allowed $\Delta J, \Delta L, \Delta S$ nuder transition

NB: "configuration" might not be pure : if two configkrations give sance tom, often intra-atom electrostatic interaction wises then: "configuration interaction" \Rightarrow results $i n$ level shifts and line vileusity changes.
b) Bole atom

Sch Eq: $-\frac{\hbar^{2}}{2 \mu} \vec{D}^{2} \psi-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi=E \psi$
$\mu=\frac{m_{e} m_{m}}{m_{e}+m_{m}}\left(\leqslant m_{c}\right)$ "reduced mass"
Spherical symun. \Rightarrow chase pole coordinates

$$
\begin{aligned}
& \vec{\nabla}^{2}=\frac{1}{r^{2}} \partial_{r} r^{2} \partial_{r}-\frac{1}{r^{2}} \hat{\bar{L}}^{2} \\
& \hat{\dot{L}}^{2}=-\frac{1}{\sin l} \partial_{l} \sin l \partial_{l}-\frac{1}{\sin ^{2} l} \partial_{\varphi}^{2} \\
& \hat{L}_{ \pm}=e^{ \pm i \varphi}\left(\pm \partial_{l}+i \cot \mu \partial_{\varphi}\right) \\
& \hat{L}_{z}=-i \partial_{\varphi}
\end{aligned}
$$

Separation of variables:

$$
\begin{align*}
4(r, l, \varphi) & =R(r) Y(2 l, \varphi) \\
\frac{1}{R} \partial, r^{2} \partial r R-\frac{2 \mu}{\hbar^{2}} r^{2}(V-E) & =\lambda \tag{la}\\
\hat{\vec{L}}^{2} y & =\lambda y \tag{lb}
\end{align*}
$$

diguler pert (Y) :

$$
\begin{align*}
& Y(\ell l \varphi)=\theta(l) \phi(\varphi) \\
& \frac{\sin \ell}{\Theta} \partial_{l} \sin l \partial_{l} \theta+\lambda \sin ^{2} l=m^{2} \tag{ia}\\
& \partial_{\varphi}^{2} \phi=-\mu^{2} \phi \\
& =D \phi=A e^{i m \varphi}+B e^{-i m \varphi} \\
& \text { with } \phi(\varphi) \stackrel{!}{=} \phi(\varphi+2 \pi)
\end{align*}
$$

$\rightarrow L_{z} \phi=m \phi \quad$ and

$$
\left[\hat{\vec{L}}^{2}, \hat{L}_{z}\right]=\left[\tilde{\tilde{L}}^{2}, \hat{L}_{I}\right]=0
$$

$\Rightarrow Y, \hat{L}_{z} Y, \hat{L}_{I} Y$ are all eigenfunction of $\dot{\vec{L}}^{2}$ with same eigenvalue
$\hat{L}_{ \pm}\left(\alpha e^{ \pm i \varphi}\right)$ raising / lowering" operators $\forall m_{\text {max }}=l$ ($w / 0$ proof, of to harm. os.)

$$
\Rightarrow \hat{L}_{+} Y_{e} \stackrel{\prime}{=} 0
$$

\Rightarrow spherical learmorics (see page fromm Foot)
\rightarrow into $(1 b) \Rightarrow d=l(l+1)$
l : "orbital q. number"
(same os gimeat for in min $\Rightarrow=-l$)
$y=Y_{e m}(\Omega, \varphi)$

You $\left.\right|^{2}$:

(spherically sym.)

$$
\left|Y_{10}\right|^{2}:
$$

$$
\left|y_{1, \pm 1}\right|^{2}:
$$

Radial equation!

$$
\begin{align*}
& P(r) \equiv r R(r) \\
& \rho^{2} \equiv \frac{2 \mu(E l}{\hbar^{2}} r^{2} V_{e f f} \\
& \partial_{S}^{2} P(\rho)+\left(t \frac{l(l+1)}{\rho^{2}}-\frac{b}{\rho}+1\right) P(\rho)=0 \tag{3}
\end{align*}
$$

where: $b=\frac{e^{2}}{4 \pi \epsilon_{0}} \sqrt{\frac{2 \mu}{\hbar^{2} \mid E l}}$

$=0$. only for $C=0$ finite prob. density \& $r=0$

- all l lave bound states

Solve (3) usnigy series \Rightarrow solution diverges

$$
=D \quad E=-\frac{2 \mu\left(\frac{e^{2}}{4 \pi \epsilon}\right)^{2}}{\hbar^{2}} \frac{1}{b^{2}}=-\frac{R y}{n^{2}}
$$

M : "principle 9 number"
\rightarrow for aton number z (but only one e^{-})

$$
\begin{gathered}
E_{z}=-Z^{2} \frac{R_{y}}{n^{2}} \\
R_{n}(\rho) \propto \rho^{m+1} e^{-\rho / 2} L_{n-l-1}(\rho)
\end{gathered}
$$

"Laguerre polynomials"
normalized: $\int_{0}^{\infty}\left(\left.R(r)\right|^{2} r^{2} d r=1\right.$

