Physics 285a Problem Set 9

posted November 14, 2023, due November 15, 2023

Problem 1. Wigner-Eckart theorem and optical transitions and angular momentum

An atom of total angular momentum F has a spontaneous radiation rate γ that consist of a sum of rates ("Einstein A-coefficients") of all transitions out of F. For example, assume it radiates to a lower level with angular momentum F' = F - 1. The problem is to find the rates for the various allowed transitions, i.e., the fraction of the radiation that goes into each of the possible transitions $(F, m) \rightarrow (F', m')$. Each of the rates is proportional to $|\langle F, m_F | Y_{1,q} | F', m'_F \rangle|^2$. The rates can be found by either direct evaluation of matrix elements of by applying the following considerations:

- (1) The sum of the rates out of each state F, m must equal A.
- (2) The sum of the rates into each state F', m' must equal $A\frac{2F+1}{2F'+1}$.
- (3) An upolarized mixture of radiators in level F must emit equal intensities of light with each of the three polarization components (z, \pm) . (Why?)
- (4) The rate for a transition $(F, m \to F', m')$ must be the same as for $(F, -m \to F', -m')$.

Consider the situation F = 1, F' = 2. Designate the transitions by letters as follows:

a:	m = 1	\rightarrow	m'=2
b:	m = 1	\rightarrow	m' = 1
c:	m = 1	\rightarrow	m'=0
d:	m = 0	\rightarrow	m' = -1
e:	m = 0	\rightarrow	m' = -2

Note that this list of transitions is not exhaustive, and additional transitions may be important.

- a) Write down the Wigner-Eckart theorem in your own words, find an outline of the proof anywhere and put this into your own words.
- b) Find a definition of the so-called 3j symbols and their connections to the Clebsch-Gordan coefficients. What would be one reason to use 3j symbols rather than Clebsch-Gordan coefficients?
- c) The Wigner-Eckart theorem can be used to evaluate matrix elements in terms of an *m*-independent quantity. Note, however, that F involves orbital, electron spin, and nuclear spin components. Does the W.-E. theorem as stated still apply? Explain what conditions must be satisfied?
- d) Find the rates for a through e in terms of the relevant Einstein-a coefficient (just call it A) using the appropriate version of the Wigner-Eckart theorem and make a figure of your results. (Clebsch-Gordan coefficients can either be worked out from first principles, taken from a table in a quantum mechanics of spectroscopy text, of computed with Mathematica.)

e) Using the symmetry considerations and conservation of probabilities (i. e. the total number of decaying atoms from level F should be equal to the total number arriving in F') show rules (2) and (4) must be true. Find the rates for a through e using rules (1) - (4), and make a figure of your results. (Note: Obviously, parts (d) and (e) should give the same results!)

Problem 2. In class, we calculated explicitly the spontaneous emission rate as the imaginary part of the change in population of the upper state in a two-level atoms. Do the same for the real part, i.e., the Lamb shift. You will get a singularity at some point – this is where we earlier in class averaged over the *s*-wavefunction. You can stop before this averaging step. Do, however, check in the literature/online for ways how to do the calculation from here and briefly describe.