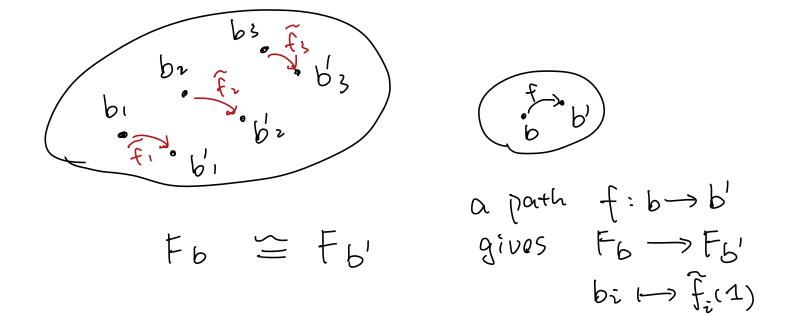
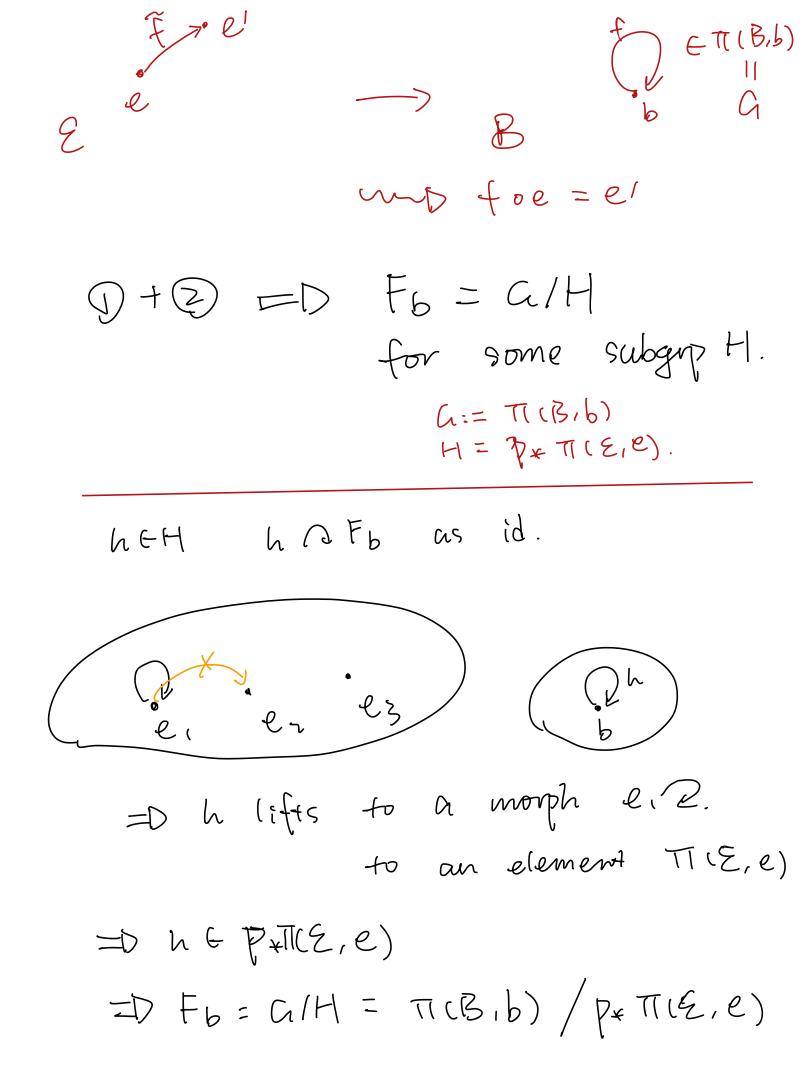


relation Fb & Fb'?

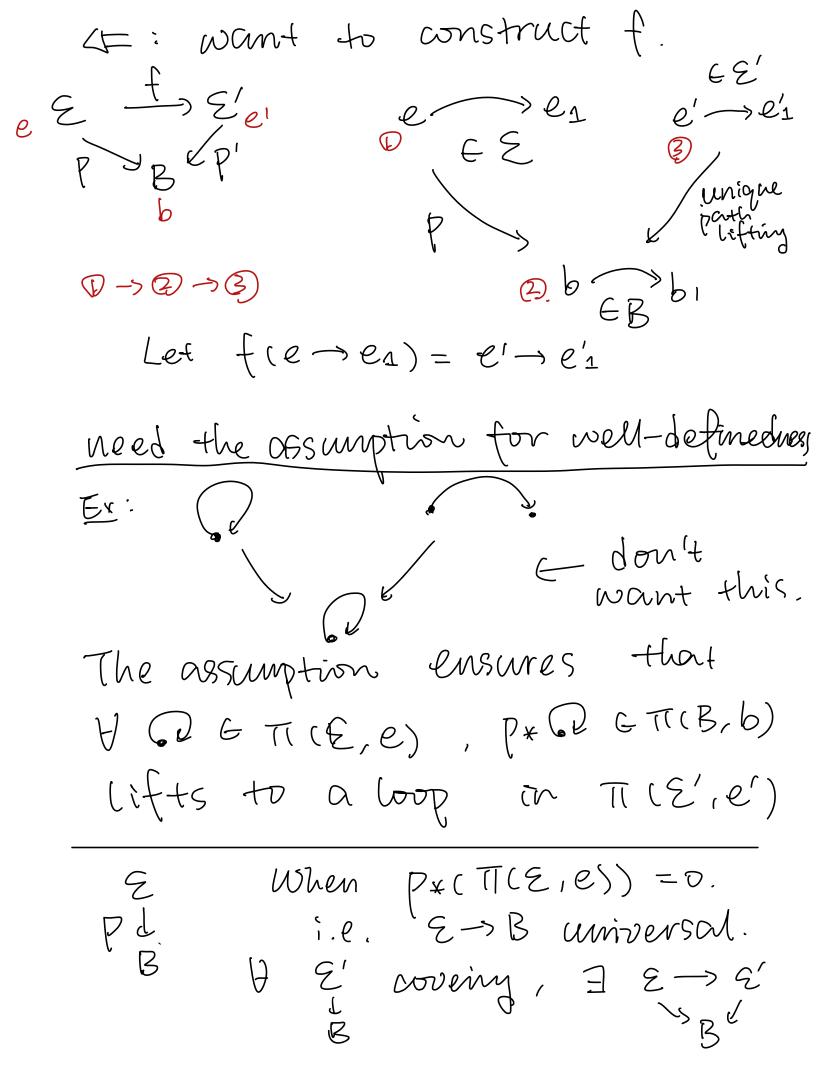


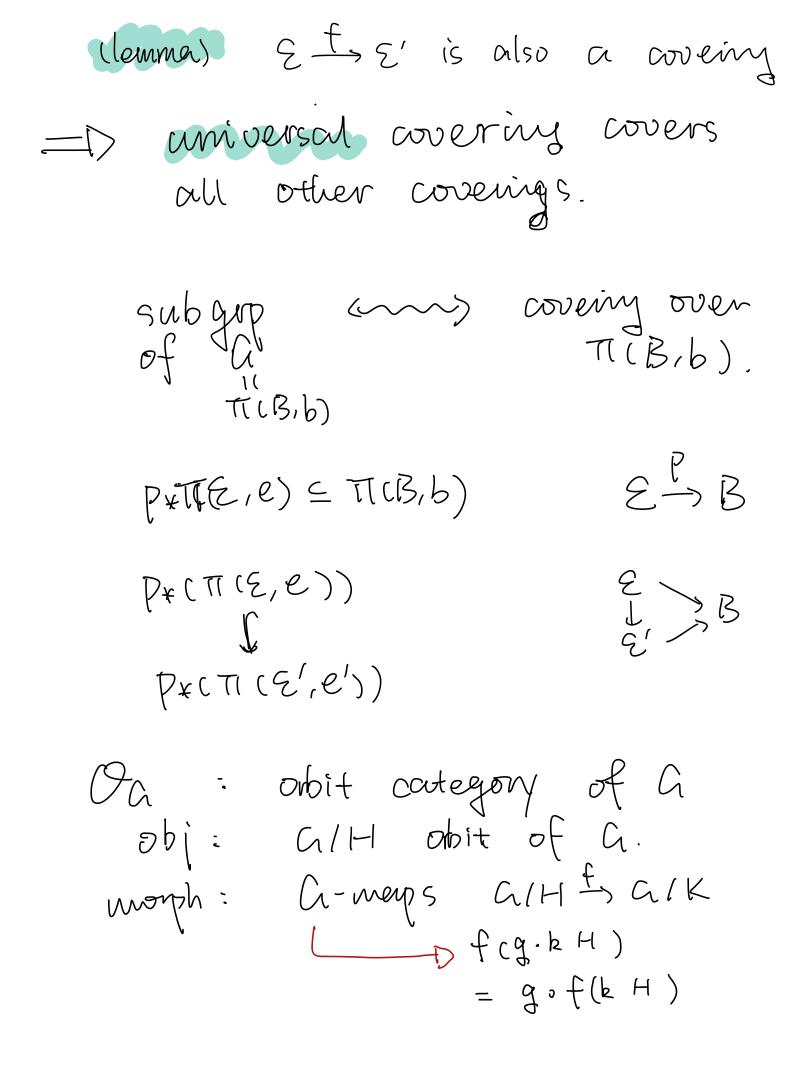
 $b = b' \qquad f \in T(B,b) \qquad gives$ $F_b \longrightarrow F_b \in Aut (F_b)$ $and isomorphisms F_b \rightarrow F_b$ G. $T(B,b) \longrightarrow Aut (F_b)$ a map of groups, (check)

D G las an action on Fb G x Fb → Fb g e → goe=e'
2 G action on Fb is transitive. (∀ e, e' EFb, ∃ g EG s.t. goe=e')



When the adversing is universal
(i.e.
$$T(E, e) = *$$
).
 $F_b = T(B, b) / e$
 $(\pi, Rp^n = Z/2, n = 2)$.
fix B, want to study all
weights $E \rightarrow B$ & maps between
them.
 $e \in f_s \in e^{i}$ (2) when does f exist?
 $P = B \in P^{i}$
A:
 $Thim$ f I if and only if
 $P = T(E, e) \subseteq P'_{x} T(E', e')$.
 $P = P'_{x} f_{x}$
 $T(E, e) f_{x} T(E', e') = P'_{x} f_{x}$
 $T(E, e) f_{x} T(E', e') = p'_{x} f_{x}(T(E, e))$
 $P^{*} = T(B, b) = p'_{x} p'_{x} f_{x}(T(E, e))$
 $= p'T(E', e').$

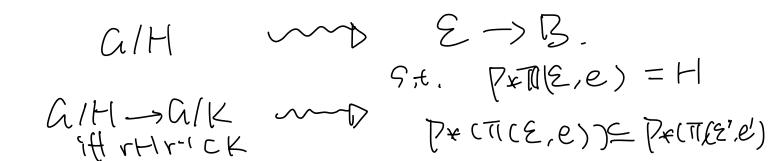




f is determined by
$$eH \mapsto rK$$

 $f(gH) = f(g(eH))$
 $f(gH) = f(eH)$
 $= gf(eH)$
 $= gf(eH)$
 $= gf(eH)$
 $= gf(eH)$
 $= gf(eH)$
 $= gf(eH)$

Thim There is a function $\Sigma: \mathcal{O}_{a} \longrightarrow \mathcal{O}_{v}(B,b).$ OG is the orbit out of G $G = \Pi (B, b)$ over B Cov(B,b) the cart of coverings obj: Z->B worph: E SB



want to show UG/HEQG, con construct €->B S.t. P+T(€, e) = H. D, when H = le, $m \neq F_b = G/e$. E: ob : 3 all path with Stanting point b} worph: unique morphism. $\mathcal{L} \mathcal{B} : \mathcal{P}(f) = f(1).$ FB = p⁻¹(b) = path stanting & ending at b $= \Pi(B,b) = G.$

2) from universal to F6=G/H. Eunio/H 2 has an action of G.

worph

Devices +. edges.

=91 Def. A grouph is. 1) X° a discrete set of pt. a set Jof maps. Zj: So X Z 2)

 $X^{\circ} \amalg I X J / \{o\} X F = \tilde{J} F(o)$ $\{1\} X F = \tilde{J} F(1)$