Graph vertices
$$X^{\circ}$$

edges. a set J , $i_{j}:S^{\circ} \rightarrow X^{\circ}$, $j \in J$
 $X^{\circ} \perp \perp I \times J / \sim = colim \begin{pmatrix} S^{\circ} \times J \rightarrow X^{\circ} \\ J \end{pmatrix}$
 $X^{\circ} = 1 \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $X^{\circ} = 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $X^{\circ} = 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $X^{\circ} = 1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $X^{\circ} = 1 \cdot \frac{1}{2} \cdot \frac{1}{2}$

$$\frac{cofibration}{Def} \xrightarrow{A^{2} \times x} is cofibration if$$

$$\frac{Def}{V} \xrightarrow{A^{2} \times x} is cofibration if$$

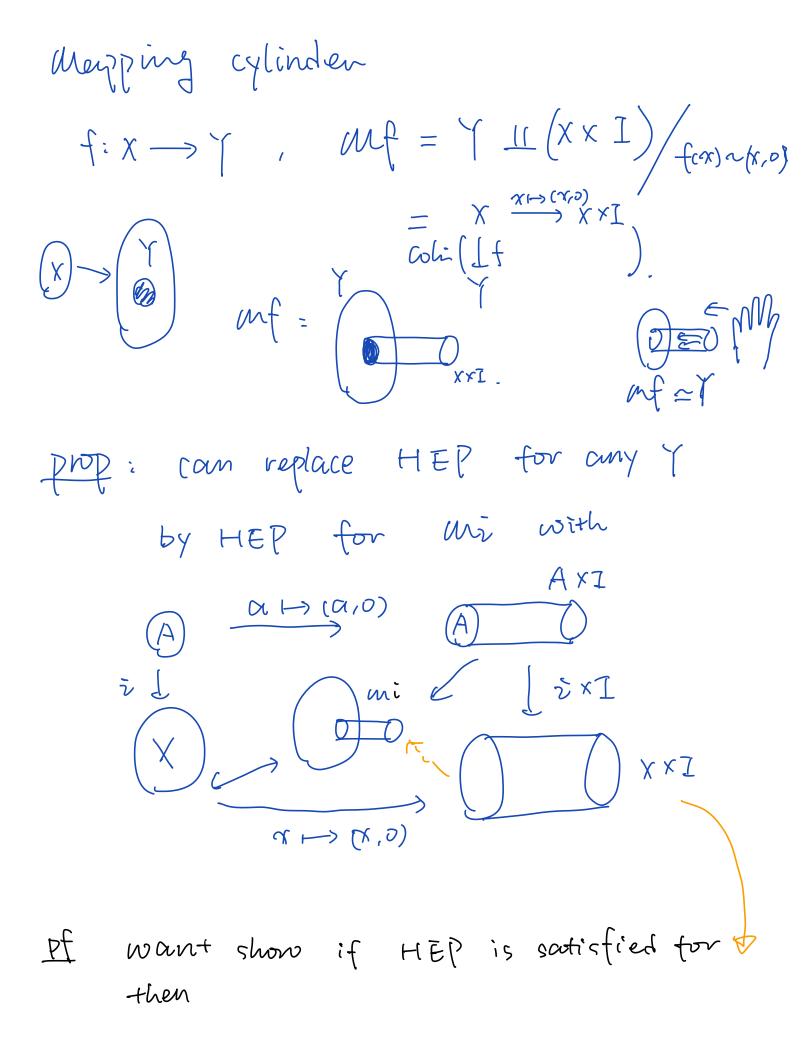
$$\frac{def}{V} \xrightarrow{A^{2} \times y} \xrightarrow$$

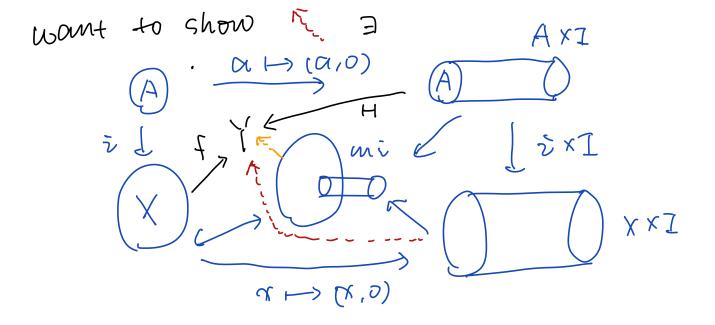
$$Map(X \times T, Z) = Map(X, Map(T, Z))$$

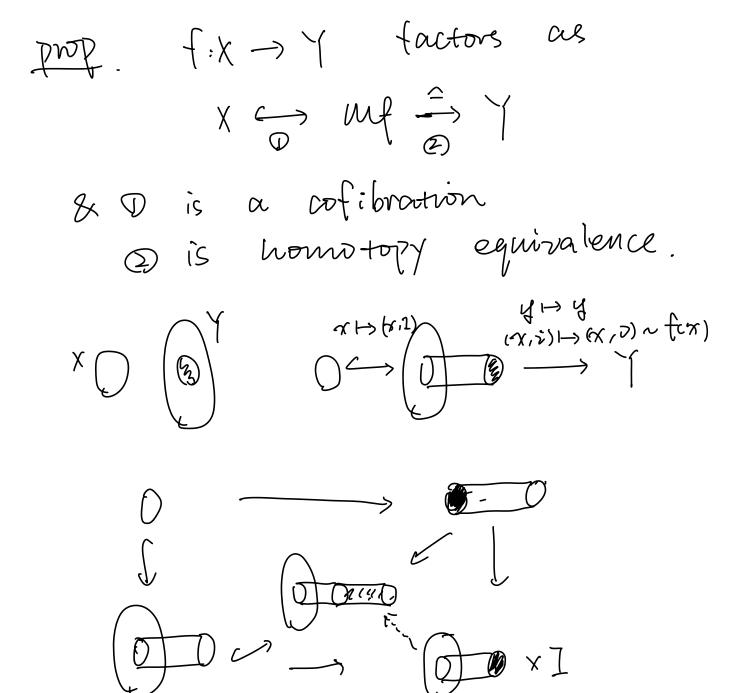
$$(X, Y) \mapsto Z \mapsto X \mapsto (Y \mapsto Z)$$

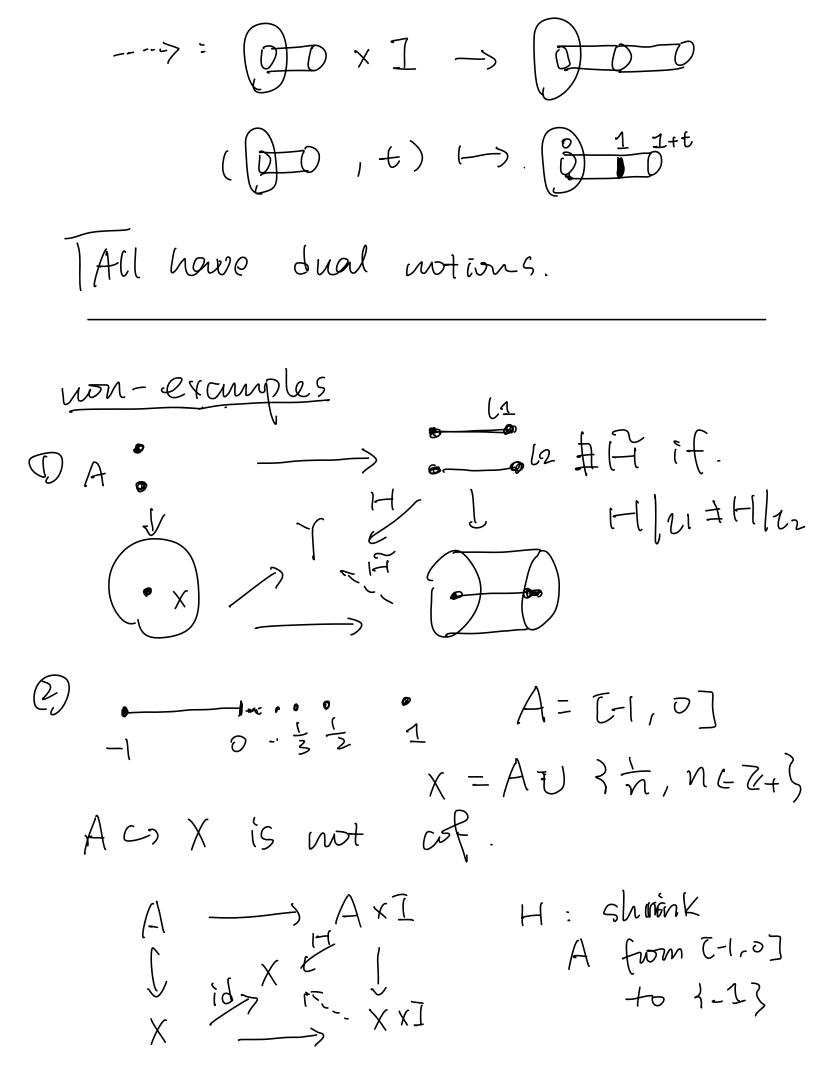
 $\begin{array}{c} A & \xrightarrow{id \times \{o\}} \\ z \\ z \\ x \\ x \\ id \times [o] \end{array} \xrightarrow{f} (X \times I) \\ id \times [o] \end{array} \xrightarrow{f} (X \times I) \\ \hline \end{array}$ $A \xrightarrow{H} (llap(1))$ s l in levo $\chi \xrightarrow{f} \chi$ $\frac{1}{1} \xrightarrow{f} Map(X, i)$ $\int \frac{1}{1} \xrightarrow{f} Map(A, i)$ $A \xrightarrow{i} X \rightarrow Y$ Homotopy extensiona property (Dual version) Elbration (invert all amous) Ref ELB is a fibration if $\begin{array}{c}
\chi & \gamma & \downarrow \\
\chi & \gamma & \downarrow \\
\downarrow & \downarrow$ Ξ a lift H. (Uap ((, E) Y-> ELB ~> -> Map(1, B)

(=+ ~) path lifting property When A > x is afibration, prop : At B is any map B-> colin([) is also a cofibration. Then A > R L L x - S x y B [™] X YB ÌF. Map(x, 1) - Map(xyB, 1) - 203 Map(A, () ← Map(B,)) ⊕ ∈
 I > May (X, Y), duent to push lift D. is a pull back dragrown. (2) e = tim(-1)



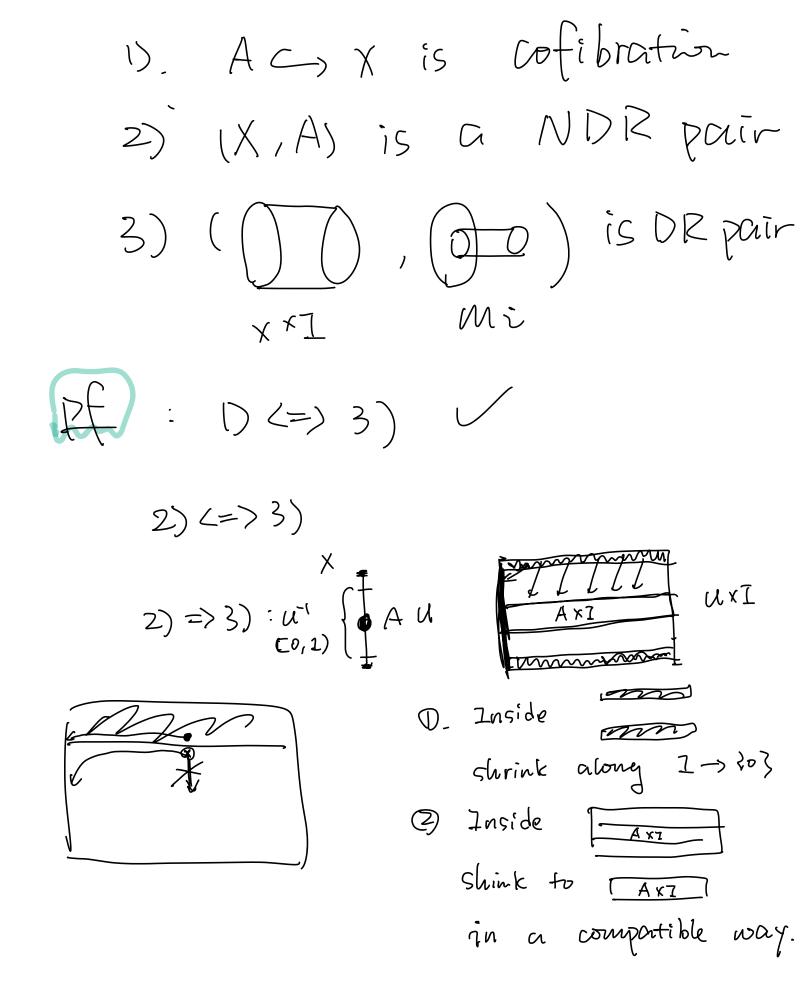


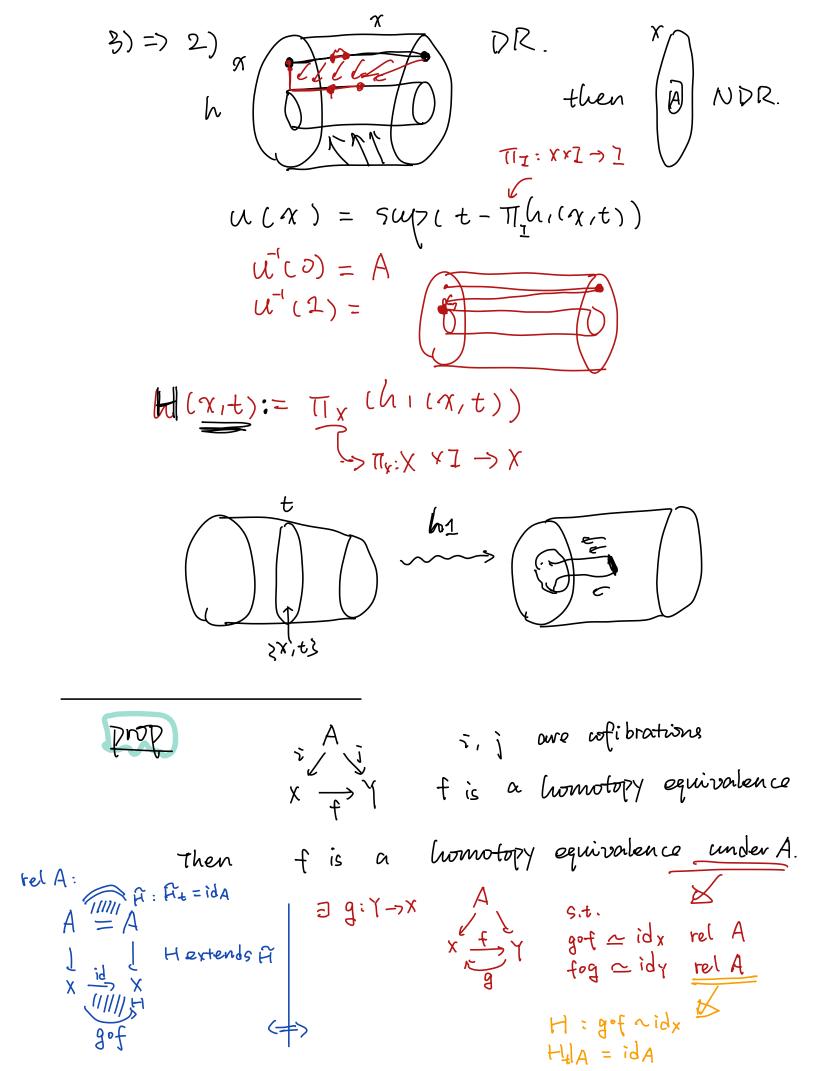




 $\begin{array}{cccc} \widetilde{H}_{1} & : & X \longrightarrow X \\ & & \widetilde{\Lambda} & \xrightarrow{} & -1 \end{array}$ $\frac{1}{1}$ \longrightarrow $\frac{1}{1}$ F1 needs to be an ext of 1-1. HAMS MANYEIS X -> [-1, 1] ∃ Fi = scale evenything to-1 HIZZ I -> X start. with z When a men is a cof. Def D (X, A) is a neighbourdroud deformatin retrat pain (NDR)

I ←X :N ●E s.t. $\mathcal{U}^{-1}(\mathcal{O}) = \mathcal{A}$ $h: X \times Z \to X S.t$ MA=idA, & $Im h \left((U^{-1} \overline{c}, 1), 1 \right) = A.$ $\frac{1}{2} \frac{1}{2} \frac{1$) (OA) 2 (X, A) is a deformation retract (DK) if NDR pair + Im M [x x x] = AThe folloing are equivalent: (h'm





Prop

$$A \rightarrow B$$

 ij ij $cofibrations$
 $i \downarrow$ jj i,j $cofibrations$
 d,f are $h.e.$
Then (d,f) is a homotopy equivalence
of pairs $(x,A) \rightarrow (Y,B)$
 $\exists e h. inverse of d$ $s.t.$ $A \rightarrow Be A$
 $g h. inverse of f.$
 $H : ed n idA$
 $H : gf n idx$
 $H extends H$

Fibration Def p: E→B is a fibration if i7 satisfy covering homotopy property (CHP): $for \)$ $Map(Y,\overline{E})$ $Y \xrightarrow{f} \overline{F}$ $\int \int J \sigma P \langle \Rightarrow \rangle idx so S [H] \overline{H} \overline{J} \overline{J} P$ $I \xrightarrow{f} Map(Y,B)$ $Y \xrightarrow{f} B$ $H \xrightarrow{f} F$ for any commutative disgram I Fi to malce the diag commutative. p:E->B fibration ExA->E A->B any map A->B f prop : EXA is pullback Then $Ex_A B \rightarrow A$ is fibration. limit (IP) $f: X \rightarrow Y$ $f: X \rightarrow Y$ f: Y Nf: mapping path space. $Nf = \lim_{x \to Y} \begin{pmatrix} Ulap(I,Y) \\ Iev_{0} \\ X \to Y \end{pmatrix}$ $Nf = \langle (x, \chi) | f(x) = \chi(0) \rangle$

Based cofibrations & fibrations
everything is based.
x → Y based maps
Ex, Y] = based maps X→Y/~
Map(X,Y) has a natural base pt
$$x: X \to Y$$
 $x \mapsto x$
unbased:
 $map(x,Y) = map(X, map(Y,Z))$
based:
 $map(x,Y) = map(X, map(Y,Z))$
based:
 $map(x,Y,Z) = map(X, map(Y,Z))$
based:
 $map mp = based maps (semding base pt to base pt) to based maps (semding base pt) to base pt)
 $x mp = X M Y / X M Y$
 $x mp = X M Y / X M Y$
 $x mp = X M Y / X M Y$
 $x mp = X M Y / X M Y$
 $x mp = X^2 M Y / X M Y$
 $x mp = X^2 M Y / X M Y$
 $x mp = X^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M Y$
 $x mp = x^2 M Y / X M$$

In general
$$S^n \wedge S^m = S^{n+m}$$

sphere of bin n
Codjunction in the based case
(Map (X ~ Y, Z) = Map (X, Map (Y, Z))
(Map means based mapping spaces)
Modertion: $\Sigma X := X \wedge S'$
 $D X := Map (S', X)$
 $Tc_o (Map (X, Y)) = D X / Y$
 $D X := Map (S', X)$
 $Tc_o (Map (X, Y)) = D X / Y$
 $D Y : [\Sigma X, Y]$ is a group;
 $D X := Tc_o (Map (X, Y))$
 $= Tc_o (Map (X, Y))$
 $T X : [Y] + [Y] = [Y]$
 $D X : [Y] + [Y] = [Y]$
 $D X : [Y] = Tc_o (Map (X, Y))$
 $T X : [Y] + [Y] + [Y]$

$$\mathcal{R}^{2}Y: S^{2} \rightarrow Y$$

$$= S^{2}$$

$$f = S^{2}$$

$$f = 9 + S$$

$$S \rightarrow S$$

$$\mathcal{R} = S^{2}$$

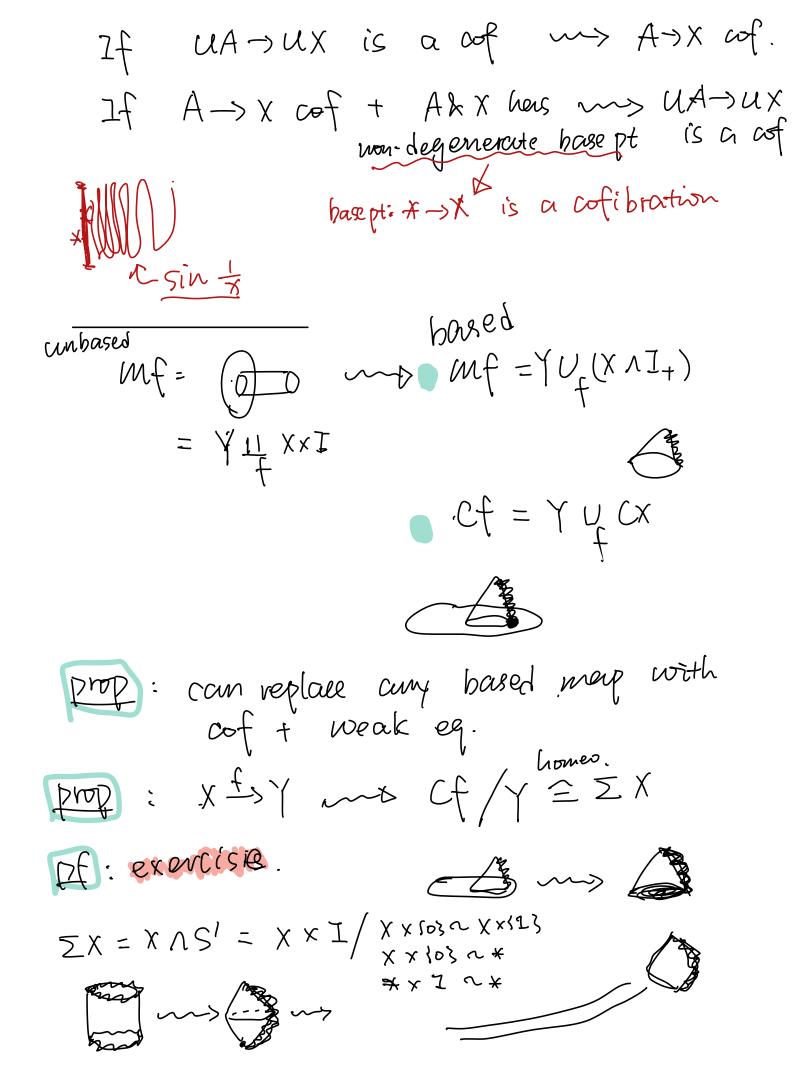
$$\mathcal{R} = S^{2} + S$$

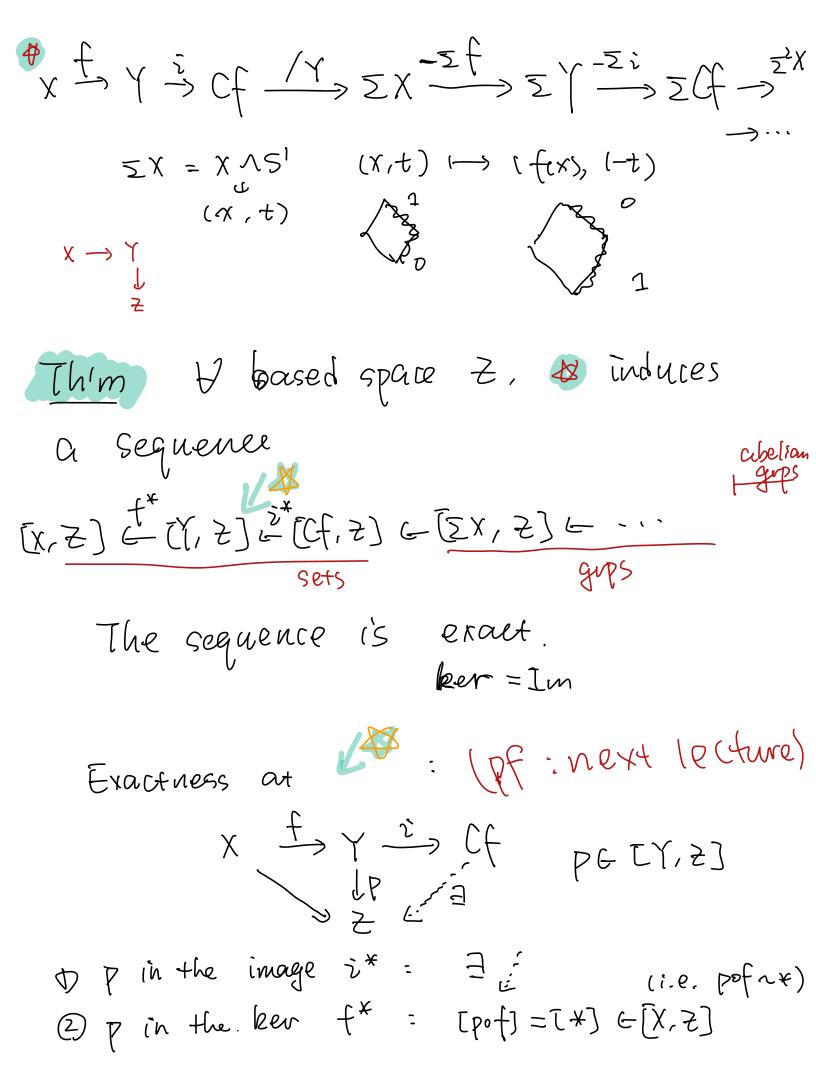
$$S \rightarrow S$$

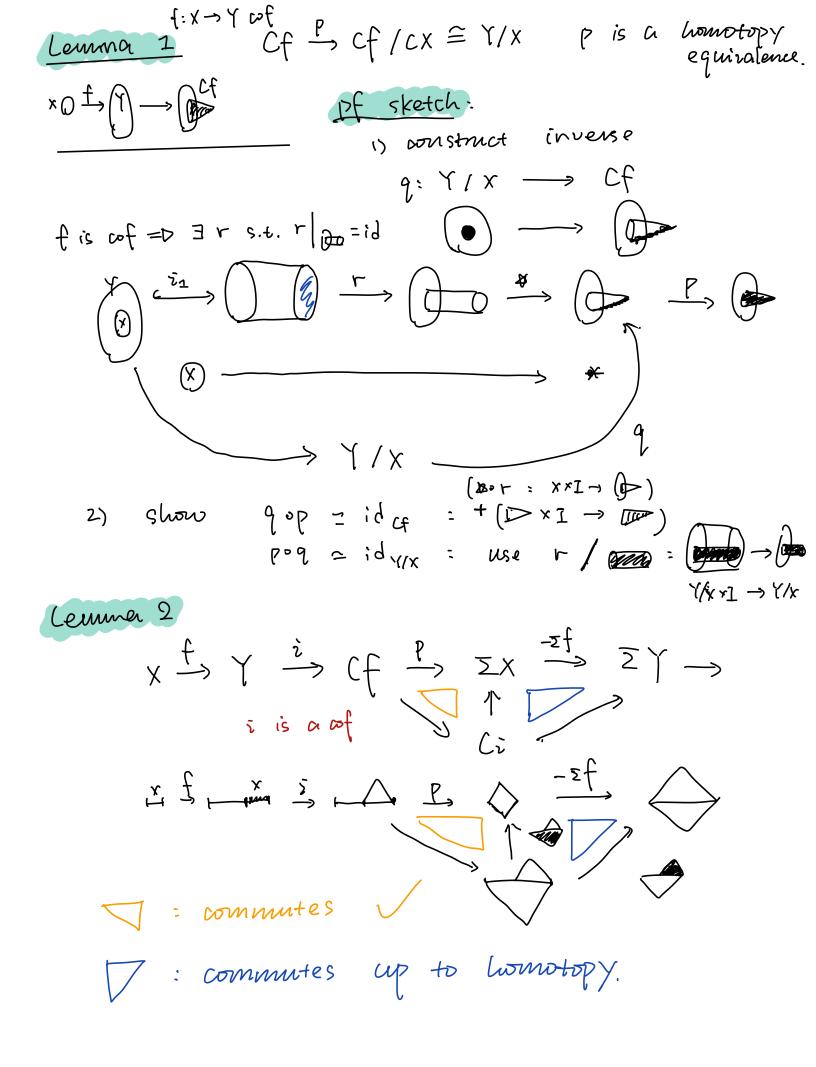
$$\mathcal{R} = S^{2} + S^{2} + S$$

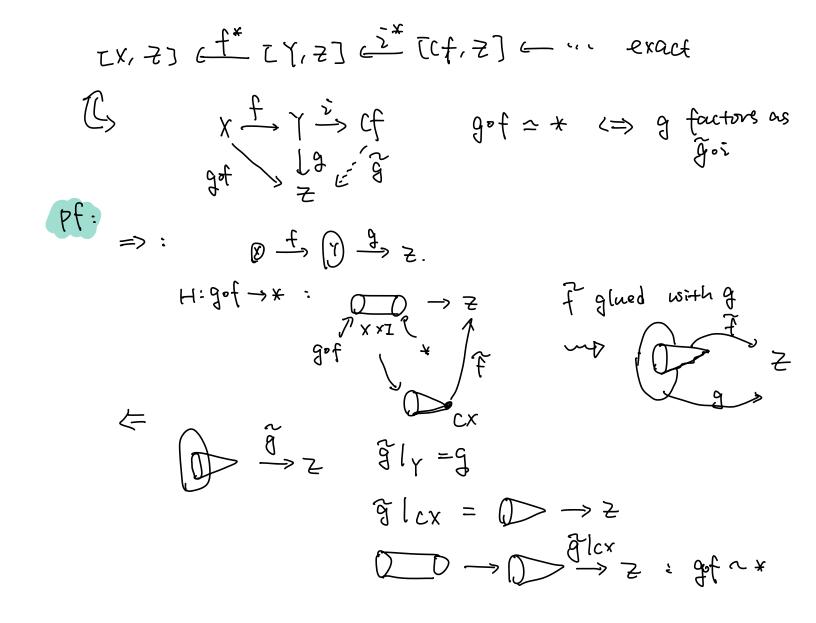
$$\mathcal{R} = S^{2} + S^{2} + S$$

operad: Str. to encode namy operations cone: $CX = X \times 1 / \{ \times 3 \times 1 \cup X \times \{ 1 \} \}$ X X X O (based) cofibration (similar for based fibrations) Deft replace eventting in the unbased def with based spaces & maps. A-X is a weep based spaces. A > X is a afibration if X E Jop* Coot of based spaces 7 Top* Jop* 7 Topx ~ Top forget the base pt. UX E Jop. A -> X based merp.



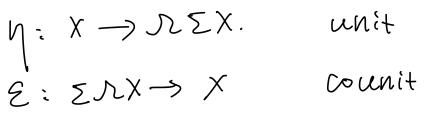


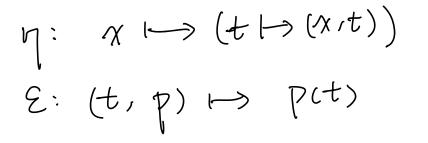


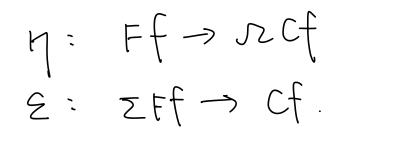


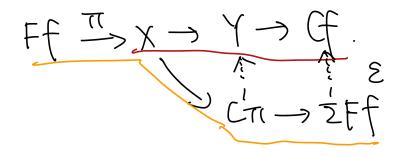
 $f \stackrel{H}{\sim} * : X \rightarrow Y$ $f \stackrel{H}{\sim} \times \xrightarrow{H} Y$

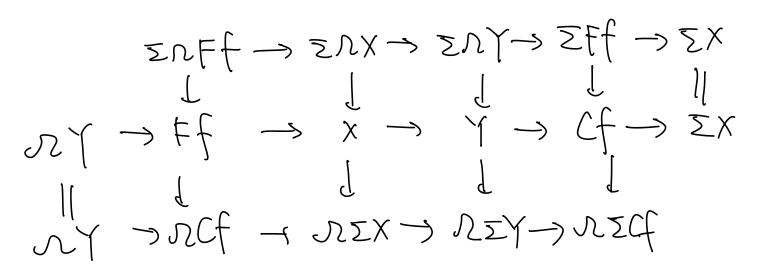
<u>fiber sequences</u> $\frac{1}{t} \xrightarrow{} \chi$ • $Ff = x \times PY = \frac{1}{2} [x, p] + \frac{p(p) = * eY}{f(x) = p(1)}$ $\begin{array}{c} x & PY = f \\ Y & f \\ \hline f \\ \hline$ Have a sequence $x \rightarrow cx \rightarrow x \rightarrow x$ $\cdots \rightarrow \mathcal{N}^{2} (\longrightarrow \mathcal{N} f \longrightarrow \mathcal{$ (Δ) $P \mapsto (+, P).$ Thim a seguence (A) induces $\cdots \longrightarrow [z, \mathcal{N}] \longrightarrow [z, ff] \longrightarrow [z, X] \longrightarrow [z, Y]$ eract. 1+ is











$$n = 1$$
: recovers fle fundamental group
 $n = 0$: $\pi_0(x) = ES^0, X] = \#(connected)$
components

Fact:
$$\pi(X) = \pi_{n-1}(\Lambda X)$$

of: $\mathbb{L}S^{n}, X] = \pi_{0} \operatorname{Map}(S^{n}, X)$
 $S^{n} = S^{1}\Lambda S^{n}T$
 $= \pi_{0} \operatorname{Map}(S^{n-1}, \operatorname{Map}(S^{1}, X))$
 $= \pi_{0} \operatorname{Map}(S^{n-1}, \Lambda X)$
 $= \pi_{0} \operatorname{Map}(S^{n-1}, \Lambda X)$
 $= \pi_{0} \operatorname{Map}(S^{n-1}, \Lambda X)$

$$\frac{f}{E} \rightarrow B \quad a \quad fibroofish \qquad F = f^{-1}(*_b)$$

$$\dots \rightarrow \mathcal{N}Ff \rightarrow \mathcal{R}E \rightarrow \mathcal{R}B \rightarrow Ff \rightarrow E \rightarrow B$$

this gives a exact seq of homotopy gaps

$$Z = S^{h} + Th'm :$$

$$\begin{bmatrix} S^{h}, B \\ \Pi, B \\ \Pi, B \\ \leftarrow \Pi, E \\ \leftarrow \Pi, E \\ \leftarrow \Pi, E \\ \leftarrow \Pi, E \\ \leftarrow \Pi, H \\ E \\ \leftarrow H \\ \leftarrow H \\ E \\ \leftarrow H \\ E \\ \leftarrow H \\ \leftarrow H \\ E \\ \leftarrow H \\ \leftarrow H \\ E \\ \leftarrow H \\ \leftarrow H$$

4)
$$TL_{n}(S^{m}) = D$$
 for $n < M$
1) these areas and f is a point
i.e. $S^{n} \xrightarrow{f} S^{m}$ is a point
 $f > S^{m} \setminus S^{p}$
 $H = f : S^{n} \rightarrow IR^{m} = D = f^{2H} \xrightarrow{IR^{m}} IR^{m}$
 $S = S^{1} \rightarrow S^{2} \rightarrow S^{2}$

