cw complexes

Def A and aplx is constructed as follows.
1).
$$X^{\circ}$$
: discrete points
2) inductively build X^{n+1} from X^{n}
 $J \times S^{n} \xrightarrow{(d_{1}) \in T} X^{n}$
 $J \times D^{n+1} \xrightarrow{(-1)} (X^{n+1})$
3) colim $(X^{\circ} \rightarrow X^{1} \rightarrow X^{2} \rightarrow \cdots) = X$
 X^{n} is called the *n*-th ekeleton.
 E_{X} : 1) graphs X° : vertice
 $J \times S^{\circ} \rightarrow X^{\circ}$
 $glue J copies$ $J \times D^{1} \rightarrow r X' \leftarrow a$ graph
2) torus.
 $\int glue = D' + D$
 $\int glue =$

4)
$$IPP^{n}$$
 $S^{n} \rightarrow IRP^{n}$
 $glumy gaves
 RP^{2} : $S^{2} = \bigoplus \implies \bigoplus \implies an-a$
 IRP^{2} : $S^{2} = \bigoplus \implies \bigoplus \implies an-a$
 IRP^{2} $S^{n+a-a}RP^{n+1}$ $D = S^{2}/aaa$
 $J^{2} \rightarrow IRP^{2}$ $D^{n} \rightarrow IRP^{n}$ $D = S^{2}/aaa$
 $I^{2} \rightarrow IRP^{2}$ $D^{n} \rightarrow IRP^{n}$ IRP^{n}
 $IP^{2} \rightarrow IRP^{n}$ IRP^{n} IRP^{n} IRP^{n}
 $IP^{2} \rightarrow IRP^{n}$ IRP^{n} IRP^{n} IRP^{n}
 $IP^{n} \rightarrow IRP^{n}$ IRP^{n} IRP^{n} IRP^{n}
 $IP^{n} \rightarrow IRP^{n}$ IRP^{n} $I$$

terminology:
$$f: x \rightarrow Y$$
 between $CW cplx$.
 $f is cellular if $f(x^n) \subset Y^n$.
3) $f: A \rightarrow Y$ cellular map. x, Y both $CW cplx$
(pushout) A is a subcomplex of X
 $A \xrightarrow{f} Y$ $Y \downarrow \chi$ is also a $CW cplx$.
 $i \xrightarrow{f} Y \downarrow \chi \chi$
 $4). $x, Y CW cplx$
 $= b X \times Y$ is also a $CW cplx$.
 $n - cell (X \times Y) = \prod j - cells(X) \times n - j cells(Y)$
 $e \leq j \leq n$
 $D^{\delta} \times D^{n,j} = D^n$
In pointicular $X \times I$ is a $CW cplx$.
 $f: X \xrightarrow{\sim} Y = D$ $Tin(f): Tin(X) \xrightarrow{\simeq} Tin(f)$
 $Q:$ whether $f is true ?$
 $A: not in general.$
 $When $X, Y CW, f true V$.
 Q 'says that CW complexes is not
 $very for form considering
ant topological spaces$$$$

Whitehead theorem
Wapproximention.

(2) Thim) X, Y CW cplx.

$$f:X \rightarrow f$$
. Then $f = f' \& f'$ is cellular.
 $(Thim) X comy space.$
 $\exists PX a cw cplx \& Y : PX \rightarrow X$
 $\exists PX a cw cplx \& Y : PX \rightarrow X$
 $\forall weak equivalence$
 $such that for $f: X \rightarrow Y$. $\exists Pf: PX \rightarrow PY$
 $\int such that for $f: X \rightarrow Y$. $\exists Pf: PX \rightarrow PY$
 $\int such there PX \xrightarrow{Pf} PY$ commutes up to
 $r_X L \quad dry \quad homotopy.$
"functoniality"
 $f$$$

$$T(x(f) \text{ is } 150 = D = inverse of T(x(f) on algebra [evelg': T(x)) \rightarrow T(x(X) s.t[Why "weak"equivalenceg' not nec. come from Tox(g) forsome g: (-) X on topgial level$$

$$wb study things up to weak equivalences
W = tweak equivalences
C Morph (top)
Top I W-1] & add inverses to
things in W.
 $x \stackrel{\omega.e.}{\rightarrow} y \stackrel{add}{\longrightarrow} x \leftarrow y$
 $w.e. x, \quad \omega.e. \\ x \leftarrow x, \quad \omega.e. \\ x \leftarrow x, \quad \omega.e. \\ y \leftarrow x, \quad \omega.e. \\ x \leftarrow y \quad wee \in (Top I W^{-1}])$
Top I W⁻¹] = W cp/x.
 $y = (T_{1}, (S^{1}) = Z)$
 $y \rightarrow (R \rightarrow S^{1}, T_{1}, x, (S^{1}) = 0)$
 $T_{n,(Z) \rightarrow T_{n}(Z) \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$
 $s_{1 \rightarrow S^{1} \rightarrow S^{1} \rightarrow T_{n}(S^{1}) = 0}$$$

X: topological space, connected
The map
$$\bigoplus_{x \in x} Y = X$$
 is
 $(PX)_{1} = V S^{1}$ The map $\bigoplus_{x \in x} Y = X$ is
 $(PX)_{1} = V S^{1}$ The map $\bigoplus_{x \in x} Y = X$ is
 $(PX)_{1} = V S^{1}$ The map $\bigoplus_{x \in x} Y = X$ is
 $(PX)_{1} = V S^{1}$ The map $\bigoplus_{x \in x} Y = X$ is
 $(PX)_{1} = V S^{1}$ The map $\bigoplus_{x \in x} PX_{1}$ to
 $(PX)_{1} = V S^{1}$ The map $\bigoplus_{x \in x} PX_{1}$ to
 $(PX)_{1} = V S^{1}$ The map $\bigoplus_{x \in x} PX_{1}$ to
 $(PX)_{1} = V S^{1}$ to $(PX)_{1}$ to
 $(PX)_{2} = V S^{1}$ to $(PX)_{1}$ to
 $(PX)_{2} = V S^{1}$ to $(PX)_{1}$ to
 $(PX)_{2} = (PX)_{2} V (Y = Y^{2}) = X$
 $(PX)_{2} = (PX)_{2} V (Y = S^{2})$ and the map $(PX)_{2}$ to $(PX)_{2}$
 $(PX)_{2} = (PX)_{2} V (Y = S^{2})$ and the map $(PX)_{2}$ to $(PX)_{2}$
 $(PX)_{2} = (PX)_{2} V (Y = S^{2})$ and the map $(PX)_{2}$ to $(PX)_{2}$
 $(PX)_{2} = (PX)_{2} = (PX)_{2} \to (PX)_{3} \to \cdots) = PX$
The map is constructed for
 $(PX)_{1} \to (PX)_{2} \to (PX)_{3} \to \cdots) = PX$
 $The map is constructed for
 $The map is constructed for$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

L

stable homotopy group

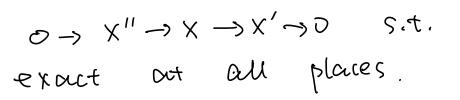
$$\pi_n^{st}(X) = \operatorname{colim}(\pi_{n+k}(\Sigma^k X))$$

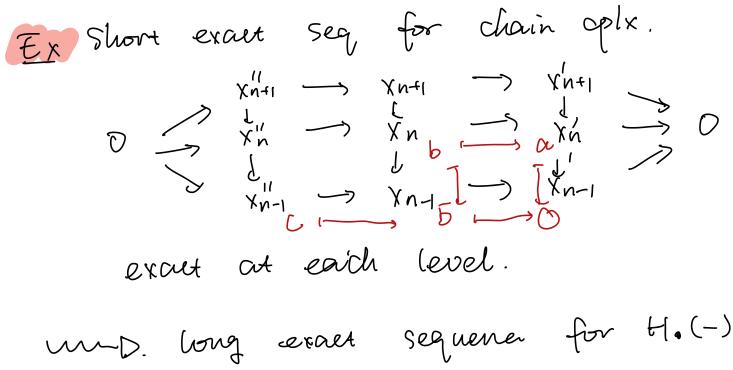
 $k \supset \infty$

Chain complex
Def.
$$\dots \rightarrow X_n \xrightarrow{dn} X_{n-1} \xrightarrow{dn-1} X_{n-2} \xrightarrow{\rightarrow} \dots$$

Each X_n is an abelian group
 $(\mathbb{Z}-madule)$
Differentials dn \mathbb{Z} -module maps.
s.t. $dn \cdot dn+1 = 0$.
Def. Homology of a chain complex $\{X_n\}$
 $H_n (\{X_n\}) = \frac{ker dn}{Im dn+1}$
 $X_{n+1} \xrightarrow{dn} X_n \xrightarrow{\rightarrow} X_{n-1}$
 $dn \cdot dn+1 = 0 = D Im dn+1 \subseteq ker dn$

short exact sequence:





 $H_n(X'') \rightarrow H_n(X_{\circ}) \rightarrow H_n(X'_{\circ}) \rightarrow$ 2 connecting women morphi sme \rightarrow $H_{n-1}(X')$

 $\alpha \mapsto c$ check was defined ness