Scattering
Radius of curvature of matter
\leq Wavelength of radiation.
similar to scattering peoblerns in quantum mechanics

At large or

$$
e^{-i \omega t}
$$

Note $\vec{f}(\vec{k})$ is a complex vector function of \vec{k}
Differential scattering cross-section $\frac{d \sigma}{d \Omega}=\frac{\text { scattered power per unit solid angle }}{\text { incident power ph unit ane }}$

$$
\text { or } \frac{d \sigma}{d \Omega}=\frac{r^{2} \hat{r} \cdot\left\langle\vec{S}_{\text {red }}\right\rangle}{\left|\left\langle\vec{S}_{\text {inc }}\right\rangle\right|}
$$

$\vec{S} \rightarrow$ Poynting vector.
For a pollination \vec{E}

$$
\begin{aligned}
& \left.\frac{d r}{d \Omega}\right|_{\vec{E}}=r^{2} \frac{\left|\epsilon^{*} \cdot \vec{E}_{r a d}\right|^{2}}{\left|E_{0}\right|^{2}}=\left|\epsilon^{*} \cdot f(k)\right|^{2} \text {. }
\end{aligned}
$$

$\vec{E}_{\text {rad }}$ is produced by some induced current \vec{J}. Recall expression for radiation from a current \vec{J}

$$
\begin{aligned}
& \vec{A}(\vec{r}, t)=\frac{\mu_{0} e^{-i \omega t}}{4 \pi r} \int d^{3} r^{\prime} \vec{J}\left(r^{\prime}\right) \\
& \left.\times \vec{k}^{i(k r}-\vec{r}^{\prime}\right) \\
& (\text { Recall } \vec{k}=k \hat{r})
\end{aligned}
$$

Using Maxwell's equations we obtain at layer

$$
\begin{aligned}
& \text { 8 Maxwells equation we obtain at }(\text { from } \vec{B}=\vec{\nabla} \times \vec{A}) \\
& \vec{B}_{\text {rad }}=\frac{i \omega}{c}+\hat{A} \times(\hat{A} \times(\hat{r} \times \vec{A})) \\
& \vec{E}_{\text {rad }}=-i \omega\left(\begin{array}{l}
\text { from }
\end{array}\right) \\
& \text { \& } S_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}_{\text {rad }}=-i \omega(r \times 1 \\
&{ }^{2} S_{\sigma} \\
& \vec{E}(\vec{r}, t)=-\frac{i k}{4 \pi \epsilon_{0} c} \hat{k} \times\left[\hat{k} \times \int_{i(k r-\omega t)} d r^{3} \cdot \vec{J}(\vec{r}) e^{-i \vec{k} \cdot \vec{r}}\right]^{\prime} \\
& \times \frac{\left.e^{i(k r-\omega}\right)}{r}
\end{aligned}
$$

$$
\frac{L_{0}}{\frac{d \sigma}{d}=\left(\frac{k}{4 \pi \epsilon_{0} E_{0} c}\right)^{2}\left|\hat{k} \times \int d^{3}, \vec{J}^{\prime}(r) e^{-i \vec{k} \cdot \vec{r}^{\prime}}\right|^{2}}
$$

Thomson scattering
Single election of charge e and mas m.
EOM $\quad m \frac{d^{2} \vec{r}_{e}}{d t^{2}}=-e \vec{E}_{\text {indent }}(t)$

$$
\begin{aligned}
& m \frac{d \vec{r}_{e}}{d t^{2}}=-e E_{i n}(t) \\
& \vec{E}_{\text {inadententent }}=\vec{e}_{0} E_{0} e^{i\left(\vec{k}_{0} \cdot \vec{r}_{e}-\omega t\right)} \\
& \approx \vec{e}_{0} E_{0} e^{i \omega t} \\
& \rightarrow \sim \sim 0 \text { and } k r
\end{aligned}
$$

Assumaing $\vec{r} \approx 0$ and $k r \ll 1$ 1.e. election does not move on the scale of a wavelength.

Under these conditions we can just use the formula for dipole recluation

$$
\begin{aligned}
& \text { the formula for dipole reduathon } \\
& \vec{E}_{\text {rad }}=-\frac{\mu_{0}}{4 \pi} \omega^{2}[\hat{k} \times(\hat{k} \times \vec{p})] \frac{\left.e^{i k r-\omega t}\right)}{r} \\
&
\end{aligned}
$$

where the dipole moment $\vec{p}=-e \vec{r}_{e}$ obese

$$
-m \omega^{2} \vec{p}=e^{2} \vec{e}_{0} E_{0}
$$

So cros-section for all scattued polaizations

$$
\begin{aligned}
& \begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}\right)^{2}\left|\hat{k} \times \vec{e}_{0}\right|^{2} \\
& \equiv r_{e}^{2}\left(1-\left|\hat{k} \cdot e_{0}\right|^{2}\right)
\end{aligned} \\
& r_{e} \equiv \frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}=2.82 \times 10^{-15} \mathrm{~m}
\end{aligned}
$$

is the classical eluction radius.

The cros-section for scatterng aradetion with sicoming polarluzation \vec{e}_{0} into ontgoing polanization \vec{e}_{s} is

$$
\left.\begin{array}{rl}
\frac{d \sigma}{d \Omega} & =r_{e}^{2} \mid \vec{e}_{s} \cdot\left(\hat{k} \times\left.(\hat{k} \times(\hat{y y}))\right|^{2}\right. \\
e_{0}
\end{array}\right] \quad \begin{array}{r}
\text { uing. }
\end{array}
$$

(Note: there are erros in luffo Zangwill on these results!).

Rayleigh Scatterny
EM scattining of ot dielatric ephaws

$$
\vec{p}=\alpha \epsilon_{0} \vec{E}
$$

$\alpha \rightarrow$ polanzatility
So $\quad \frac{d \sigma}{d \Omega}=\left(\frac{k_{0}^{2} \alpha}{4 \pi}\right)^{2}\left|\vec{e}_{s} \cdot \vec{e}_{0}\right|^{2}$
$\alpha=\# a^{3}$ whre is the epher redime
bo $\frac{d \sigma}{d \Omega} \sim\left(k_{0} \sigma\right)^{4} a^{2}$
I $1 / \lambda^{4}$ dependere on warclength why stey is blux!

