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Problem 1

(a) Prove that

δ(ax) =
1

|a|
δ(x), a 6= 0 (1)

(b) Use the identity in part (a) to prove that

δ(g(x)) =
∑
m

1

|g′(xm)|
δ(x− xm), where g(xm) = 0 and g′(xm) 6= 0 (2)

(c) Show that ∫ ∞
−∞

dx′f(x′)δ′(x′ − x) = −f ′(x) (3)

Problem 2

Consider a collection of N point particles fixed in space, each with time varying charge qi(t). The charge
density can be expressed as

ρ(r, t) =

N∑
i=1

qi(t)δ(r − ri) (4)

Suppose that E(r, t = 0) = B(r, t = 0) = 0 and

E(r, t) =
1

4πε0

N∑
i=1

qi(t)
r − ri
|r − ri|3

(5)

(a) Show that the current density

J(r, t) = −
N∑
i

dqi(t)

dt

1

4π

r − ri
|r − ri|3

(6)

satisfies the continuity equation.

(b) Find B(r, t) and show that this field and E(r, t) satisfy all four Maxwell equations

Problem 3

If the photon had a mass m, the electric field would remain E = −∇ϕ but Poisson’s equation would change
to include a length L = ~/mc i.e.

∇2ϕ = − ρ

ε0
+

ϕ

L2
(7)
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Experimental searches for m use a geometry first employed by Cavendish where two concentric conducting
shells (radii r1 < r2) are maintained at a common potential Φ by an infinitesimally thin connecting wire.
When m = 0, all excess charge resides on the outside of the outer shell; no charge accumulates on the inner
shell.

(a) Use the substitution ϕ(r) = u(r)/r to solve the generalized Poisson equation above in the space between
the shells. Also, find the electric field in this region.

(b) Use the generalization of Gauss’ law implied by the modified Poisson equation to find the charge Q on
the inner shell.

(c) Show that, to leading order when L→∞,

Q ≈ 2πε0
3

r1Φ

L2

(r2
L

)2(
1 +

r1
r2

)
(8)

Problem 4

Second derivatives are difficult to calculate numerically with high accuracy. Therefore, if both the fields and
the potentials (Lorenz gauge) are of interest, a convenient equation to integrate is

∂A

∂t
= −E −∇ϕ (9)

(a) Let C(r, t) = ∇ ·E − ρ
ε and let the initial conditions satisfy C(r, t = 0) = 0. If this Gauss’ law condition

is maintained, show that the equation above combined with the two equations below produces fields that
satisfy all four Maxwell equations and properly defined potentials:

1

c2
∂E

∂t
= ∇× (∇×A)− µ0J and

∂ϕ

∂t
= −c2∇ ·A (10)

(b) Show that the three equations above imply that ∂C
∂t = 0. Hence, any initial differences from zero (due

to numerical noise) are frozen onto the computational grid (which is not a good thing).

(c) Show that the two equations in (a) can be replaced by ϕ̇ = −c2Γ with

1

c2
∂E

∂t
= −∇2A +∇Γ− µ0J and

∂Γ

∂t
= − ρ

ε0
−∇2ϕ (11)

(d) Show that Ȧ = −E−∇ϕ and the three equations in part (c) imply that ∂2C
∂t2 = c2∇2C. Hence, any initial

differences from zero propagate out of the computational grid at the speed of light. For this reason, set
(c) is preferred to set (a) for numerical work.

Problem 5

(a) Confirm that ϕ(r) = −r ·E and A = − 1
2r×B are acceptable scalar and vector potentials, respectively

for a constant electric field E and a constant magnetic field B.

(b) By direct computation of B = ∇×A and E = −∇ϕ− ∂A
∂t , prove that the generalizations of the formulae

in part (a) to arbitrary time-dependent fields are

ϕ(r, t) = −r ·
∫ 1

0

dλE(λr, t) and A(r, t) = −
∫ 1

0

dλ(λr ×B(λr, t)) (12)

Hint: first prove that

d

dλ
G(λr) =

1

λ
(r · ∇)G(λr) (13)

for any vector field G
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Problem 6

An early competitor of the Big Bang theory postulates the “continuous creation” of charged matter at a
(very small) constant rate R at every point in space. In such a theory, the continuity equation is replaced
by

∇ · J +
∂ρ

∂t
= R (14)

(a) For this to be true, it is necessary to alter the source terms in the Maxwell equations. Show that it is
sufficient to modify Gauss’ law to

∇ ·E =
ρ

ε0
− λϕ (15)

and the Ampere-Maxwell law to

∇×B = µ0J +
1

c2
∂E

∂t
− λA (16)

Here, λ is a constant and ϕ and A are the usual scalar and vector potentials. Is this theory gauge
invariant?

(b) Confirm that a spherically symmetric solution of the new equations exists with

A(r, t) = rf(r, t) and ϕ(r, t) = ϕ0 (17)

where f(r, t) is a scale function and ϕ0 is a constant.

(c) Show that the only non-singular solution to the partial differential equation satisfied by f(r, t) is a
constant.

(d) Show that the velocity of the charge created by this theory, v = J/ρ, is a linear function of r. This
agrees with Hubble’s famous observations.
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