
Phys 232 Problem Set 3

Released: 2/24/2020
Due: 3/11/2020

References: Jackson Chapters 9 and 11, Zangwill Chapters 15, 20, and 22

Problem 1

Recall that the linear momentum density is given by

g =
S

c2
= ε0(E ×B) (1)

The angular momentum density is then r×g which leads to the following expression for the electromagnetic
angular momentum LEM

LEM = ε0

ˆ
d3r(r ×E ×B) (2)

(a) Show that a classical oscillating electric dipole p with fields given by

B =
ck2

4π
(n̂× p)

eikr

r

(
1− 1

ikr

)
(3)

E =
1

4πε0

[
k2(n̂× p)× n̂

eikr

r
+ (3n̂(n̂ · p)− p)

(
1

r3
− ik

r2

)
eikr

]
(4)

radiates electromagnetic angular momentum to infinity at the rate

dLEM
dt

=
k3

12πε0
=[p∗ × p] (5)

For more on electromagnetic angular momentum, see Zangwill Chapter 15 section 6

(b) What is the ratio of angular momentum radiated to the energy radiated? Interpret.

(c) For a charge e rotating in the x − y plane at radius a and angular speed ω, show that there is only a

z component of radiated angular momentum with magnitude d(LEM )z
dt = e2k3a2

6πε0
. What about a charge

oscillating along the z axis?

(d) What are the results corresponding to parts a and b for magnetic dipole radiation? Hint : The electro-
magnetic angular momentum density comes from more than the transverse (radiation zone) components
of the fields.

Problem 2

An infinitely long straight wire of negligible cross-sectional area is at rest and has a uniform linear charge
density q0 in the intertial frame K ′. The frame K ′ (and the wire) move with a velocity v parallel to the
directiomn of the wire with respect to the laboratory frame K.

(a) Write down the electric and magnetic fields in cylindrical coordinates in the rest frame of the wire. Using
the Lorentz transformation properties of the fields, find the components of the electric and magnetic
fields in the laboratory.
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(b) What are the charge and current densities associated with the wire in its rest frame? In the laboratory?

(c) From the laboratory charge and current densities, calculate directly the electromagnetic fields in the
laboratory. Compare with the results of part a.

Problem 3

(a) Express the Lorentz scalars FαβFαβ F̃
αβFαβ and F̃αβF̃αβ in terms of E and B. Are there any other

invariants quadratic in the field strengths E and B? Note: F̃αβ is the dual field strength tensor and is
related to Fαβ via

F̃αβ =
1

2
εαβγδFγδ (6)

(b) Is it possible to have an electromagnetic field that appears as a purely electric field in one inertial frame
and as a purely magnetic field in some other intertial frame? What are the criteria imposed on E and
B such that there is an inertial frame in which there is no electric field?

Problem 4

In a certain reference frame a static uniform electric field E0 is parallel to the x axis, and a static uniform,
magnetic induction B0 = 2E0 lies in the x−y plane, making an angle θ with the axis. Determine the relative
velocity of a reference frame in which the electric and magnetic fields are parallel. What are the fields in
that frame for θ � 1 and θ → (π/2)?

Problem 5

Show by explicit calculation that the formulae for the charge and current densities of a collection of point
charges,

ρ(r, t) =

N∑
k=1

qkδ(r − rk(t)) (7)

J(r, t) =

N∑
k=1

qkvk(t)δ(r − rk(t)) (8)

have exactly the same form when we boost from frame K to frame K ′ by a velocity v0.
Hint: Show first that δ(r′ − r′k(t′)) = γ(1− v0 · vk/c2)δ(r − rk(t)) by evaluating the Jacobian determinant
in the volume element transformation d3R = |J(R, r′)|d3r′ where R = r − rk(t).
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