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References: David Tong’s Electromagnetism notes, Zangwill Chapters 4.6, 6, 17

Problem 1

A semiconductor with permittivity ε occupies the space z ≥ 0. One “dopes” such a semiconductor by
implanting neutral, foreign atoms with uniform density ND in the near-surface region 0 ≤ z ≤ d. Assume
that one electron from each dopant atom ionizes and migrates to the free surface of the semiconductor. The
final result (illustrated by the diagram) is a region with uniform positive charge density eND and a layer of
negative charge with density σ localized at z = 0.
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near-surface region 0 ≤ z ≤ d. Assume that one electron from each dopant atom ionizes and migrates to
the free surface of the semiconductor. The final result (illustrated by the diagram) is a region with uniform
positive charge density eND and a layer of negative charge with density σ localized at z = 0.

(a) Find and sketch the electric field E+(z) at every point in space produced by the volume charge.
(b) Find σ and the electric field E−(z) produced by σ . Sketch E− on the same graph used to sketch E+ in

part (a).
(c) Sketch the total electric field and check that your graph is consistent with integrating Gauss’ law from

z = −∞ to z = ∞.

6.18 Surface Polarization Charge Point charges q1, q2, . . ., qN are embedded in a body with permittivity κin.
The latter is itself embedded in a body with permittivity κout. Find the total polarization charge Qpol induced
on the boundary between the two dielectrics.

6.19 An Elastic Dielectric The parallel-plate capacitor shown below is made of two identical conducting plates
of area A carrying charges ±q. The capacitor is filled with a compressible dielectric solid with permittivity
ε and elastic energy

Ue = 1
2
k(d − d0)2.

(a) Find the equilibrium separation between the plates d(q).
(b) Sketch the potential difference between the plates V (q). Comment on any unusual behavior of the

differential capacitance Cd (q) = dq/dV .

q
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d

6.20 A Dielectric Inclusion A dielectric body with permittivity εin is embedded in an infinite volume of
dielectric matter with permittivity εout. The entire system is polarized by an external electric field Eext. If ϕ

is the exact electrostatic potential and S is the surface of the embedded body, show that the dipole moment
of the system can be written in the form

p = (εout − εin)
∫

S

dS n̂ϕ(rS).

6.21 A Classical Meson Application 6.4 modeled a meson (a quark-antiquark pair) as a finite dipole placed at
the center of a spherical cavity with radius R and unit dielectric constant scooped out of an infinite medium
with dielectric constant κ → 0. For this problem, we replace the finite dipole by a point dipole p.

(a) Find D and E everywhere for finite κ .
(b) Confirm the statements made in the Application regarding D and UE when κ = 0. Assume a cutoff

distance a & R to simulate the size of the original dipole.

6.22 An Application of the Dielectric Stress Tensor A metal ball with charge Q sits at the center of a thin,
spherical, conducting shell. The shell has charge Q′ and the space between the shell and the ball is filled
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(a) Find and sketch the electric field E+(z) at every point in space produced by the volume charge.

(b) Find σ and the electric field E−(z) produced by σ. Sketch E− on the same graph used to sketch E+ in
part

(c) Sketch the total electric field and check that your graph is consistent with integrating Gauss’ law from
z = −∞ to z =∞.

Problem 2

Application 6.3 in Zangwill modeled a meson (a quark-antiquark pair) as a finite dipole placed at the center
of a spherical cavity with radius R and unit dielectric constant scooped out of an infinite medium with
dielectric constant κ→ 0. For this problem, we replace the finite dipole by a point dipole p.

(a) Find D and E everywhere for finite κ.

(b) Confirm the statements made in the Application regarding D and UE when κ = 0. Assume a cutoff
distance a� R to simulate the size of the original dipole.

Problem 3

A point source of light is embedded near the flat surface of a dielectric with index of refraction n. Treat the
emitted light as a collection of plane waves (light rays) that propagate isotropically away from the source.
Find the fraction of light rays that can refract out of the dielectric into the vacuum space above.
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Problem 4

The optical properties of a remarkable class of materials called topological insulators (TI) are captured by
constitutive relations which involve the fine structure constant, α = (e2/~c)/(4πε0). With α0 = α

√
ε0/µ0,

the relations are

D = εE − α0B (1)

H =
B

µ
+ α0E (2)

(a) Begin with the Maxwell equations in matter with no free charge or current. Show that a monochromatic
plane wave of (E,B) is a solution of these equations for a TI and find the wave speed.

(b) A plane wave with linear polarization impinges at normal incidence on the flat surface of a TI. Show
that the transmitted wave remains linearly polarized with its electric field rotated by an angle θF . This
is called Faraday rotation of the plane of polarization.

(c) Show that the reflected wave remains linearly polarized with its electric field rotated by an angle θK .
This is called Kerr rotation of the plane of polarization.

Problem 5

Consider a setup in which the region y < 0 is vacuum and the region y > 0 is filled with material where
µ = µ0 and Dij = εijEj . Let α, β, and γ be real numbers and take the dielectric matrix as

ε = ε0

 α iβ 0
−iβ α 0

0 0 γ

 (3)

(a) Write out the electric field everywhere if a wave incident from the vacuum is E = E0x̂e
iω( y

c−t).

(b) Repeat part (a) if the incident field is E = E0
x̂+ẑ√

2
eiω( y

c−t).
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