
Chem 163, Problem Set 2
Due 9/22/2022, 9 am

September 8, 2022

1 Drift relaxation in solution

� Consider a bacterium, idealized as a sphere of radius 1 µm, propelling
itself at 1 µm/s. At time zero, the bacterium suddenly stops swimming
and coasts to a stop, following Newton’s Law of motion with the Stokes
drag force. Assume the bacterium has the same density as water. What
is the time constant for the bacterium to dissipate its initial momentum
to the solution?

� How far does it travel before it stops?

� Now assume that the bacterium isn’t swimming at all, but is purely
driven by Brownian motion. Approximately what is its mean-square
velocity along the x-axis? How far does it travel in a given direction
before it forgets its initial direction?

� It is challenging for bacteria to swim in a straight line because rotational
Brownian motion sends them off course. For a 1 µm approximately
spherical bacterium in water, what is its rotational diffusion coefficient
(with units)? If the bacterium is swimming at 1 µm/s, approximately
how far can it go before it “forgets” which way it was headed and is on
average 30 degrees off from its initial heading?

� Now consider a typical protein molecule in solution (2.5 nm diame-
ter, density ρ ≈ 1.3g/cm3). What is its momentum relaxation time?
Thermal velocity? Brownian hop size? Comment on whether we are
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justified in treating the motion as an ideal random walk over the time
and distance for this protein to diffuse across a bacterium (1 µm).

2 Rotational diffusion times

Most biomolecules have a density of ρ ≈ 1.3g/cm3. Plugging in numbers
appropriate for water at room temperature, verify the statement, “The rota-
tional diffusion time in picoseconds is approximately equal to the molecular
weight in AMU.”

3 Violation of the Central Limit Theorem?

In class we asserted that if you convolve a probability distribution with itself
enough times, you usually get a Gaussian distribution. In this problem we
will see an example where this is not true.

� First let’s check that a Gaussian distribution is a fixed point of iterated
convolutions. Define
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Show that G3 = G1⊗G2 is a Gaussian. What is the variance σ3 of G3?

� In electronically excited atoms or molecules, radiation damping gives
a spectral lineshape with a Lorentzian profile:

L1(x) =
l1
π
· 1

x2 + l21
, (3)

where x = λ−λ0 and λ is the wavelength and λ0 is the peak wavelength.
Check that L1(x) is normalized, i.e. that

∫∞
−∞ L1(x)dx = 1.

Another mechanism of broadening the spectrum is called pressure broad-
ening, which can also lead to a Lorentzian lineshape:

L2(x) =
l2
π
· 1

x2 + l22
. (4)
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When two line-broadening mechanisms are active, the full spectrum is
the convolution of the two individual spectra. Show that

L3 = L1 ⊗ L2 (5)

is a Lorentzian. No amount of convolving Lorentzians with Lorentzians
will ever give you a Gaussian! Why isn’t this a violation of the Central
Limit Theorem?

4 Analyzing a Brownian trajectory

The data for this problem consists of a velocity trajectory, v(t), for a free
Brownian particle at room temperature (300 K). The time-step is 20µs and
the velocity is expressed in units of cm/s. Write a program to calculate the
autocorrelation function ⟨v(t+ τ)v(t)⟩, and keep the autocorrelation for τ
in the range [0, 2ms]. As in the previous problem, the xcov command will
be helpful. The discussion of the velocity autocorrelation of an overdamped
Brownian particle, in Appendix B of Lecture Notes 4 could be helpful.

� Show a plot of the velocity autocorrelation function for your trajectory.
Label your axes with the correct units. Try plotting the function on a
log-y scale using the function semilogy.

� What is the decay constant of your autocorrelation function?

� What is the mass of the particle? What is γ, the frictional constant
felt by the particle?

� Include your annotated code for calculating the autocorrelation.

5 Brownian motion in a harmonic well

The data for this problem consists of a position trajectory, x(t), of a spherical
particle undergoing overdamped Brownian motion in a harmonic well in water
at room temperature (300K). The positions (in nm) of the spherical particle
are measured with a time-step of 3 ms. You should re-use your code from
problem 3.
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� Show the position autocorrelation function of your trajectory. Again,
label your axes.

� What is the decay constant of your correlation? How does it compare
to that in 3(b)?

� Determine the radius of the particle.

� Determine the spring constant of the trap.

6 Analyzing FCS Data

In this problem, you will be given real data from a recent fluorescence correla-
tion spectroscopy (FCS) experiment and asked to analyze it using MATLAB.
The data files are available on the course web site and are formatted as text.
Each file contains a list of photon counts that have been binned in 100 µs
intervals. One data set was taken using fluorescent polystyrene beads, and
the other was taken using fluorescently labeled single-stranded DNA. The
data was taken by focusing a laser beam into a droplet on a coverslip in
a microscope, and recording the number of photons emitted by the sample
during each 100 µs period.

FCS normally works by fitting the autocorrelation function of intensity
data of the type provided here. An autocorrelation function is defined to be

G(τ) =
⟨δI(t)δI(t+ τ)⟩

⟨I(t)⟩2
(6)

where δI(t) ≡ I(t)− ⟨I(t)⟩ represents deviations from the mean intensity.
For ordinary 3D diffusion, the equation for the autocorrelation function

works out to be:

G(τ) = G0
1

(1 + (τ/τD))(1 + a−2(τ/τD))1/2
+G∞ (7)

In this equation, τD is the residence time of the particle within the illuminated
volume; a is the ratio of the axial length of the illuminated volume to the
lateral length; and G0 = ⟨N⟩−1, where N is the average number of particles
in the illuminated volume. The parameter τD can be used to determine the
diffusion coefficient of the particle using the formula D = R2/4τD, where R
is the radius of the illuminated area in the lateral plane. For a spherical
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particle of radius r in a fluid of viscosity η at temperature T , the Einstein
relation states that the diffusion constant follows the formula:

D =
kBT

6πηr
(8)

Thus, it is possible to use FCS data to determine a particle’s diffusion con-
stant, and from that, its radius (if it is spherical). This is what we will do in
this exercise.

Create a script to perform the following tasks:

� Load the data into MATLAB. Use the load command; see the help file
for assistance.

� Compute the autocorrelation function of the data from each file. The
easiest way to do this is to use the xcov command; refer to the help
file for more information. Set the maximum lag to be one second (re-
member that each data point represents a bin of length 100 µs), and
use ‘unbiased’ scaling. Store both the covariance output and the lags
(which are equivalent to τ in the formulas above), and rescale the lags
so they are in microseconds. Keep in mind that the xcov command
does not divide by the square of the mean intensity; you will need to
do this yourself on another line. xcov generates values for both negative
and positive τ ; these are redundant, so you should resize the output
(both the covariance and the lags) to only include values for τ ≥ 0.

� Fit the two autocorrelation functions you calculate to the formula
above. Fitting using MATLAB is somewhat difficult, so I will guide
you through the process. You will first need to create a fittype object
using the fittype command (again, consult the help file). For exam-
ple, if I wanted to fit data to a Gaussian distribution, I would create a
fittype object as follows:

gaussfittype = fittype(‘1/(sqrt(2*pi*sigma^2))*exp(-(s - mu)^2-

/(2*sigma^2))’,‘independent’,‘s’,‘coefficients’,{‘mu’,‘sigma’});
The ‘independent’ property sets which variable is treated as the in-
dependent variable (in this case, s). The ‘coefficients’ property
sets which variables are treated as coefficients (in this case, ‘mu’ and
‘sigma’), and their ordering. For the autocorrelation function above,

5



the independent variable will be τ and the coefficients will be G0, G∞,
a, and τD.

To fit a series of data, use the fit command. To continue with the
example above, let’s say I want to perform a Gaussian fit to a series
of points with coordinates in the vectors X and Y. The line I would use
might look as follows:

gaussfit = fit(X, Y, gaussfittype, ‘Startpoint’, [0, 5], ‘Lower’,

[-5, 0], ‘Upper’, [5, 50]);

Let’s look at the parts of this statement one by one. X is the x-
coordinates of the data you are fitting. Y is the y-coordinates. gaussfittype
is the fittype object created earlier, and sets the function to which the
data are being fit. ‘Startpoint’, [0, 5] sets the starting values of
the two coefficients of the fit; in this case, I am setting the initial values
mu = 0 and sigma = 5. ‘Lower’, [-5, 0] and ‘Upper’, [5, 50]

set the lower and upper bounds for the variables being fit; in this case,
I am setting the restrictions -5 ≤ mu ≤ 5 and 0 ≤ sigma ≤ 50. For
each of these properties (‘Startpoint’, ‘Upper’, and ‘Lower’), the
ordering of the coefficients matches the order in which they were listed
when the fittype object was first defined.

For your FCS fits, do not fit the zero-lag point (τ = 0), as it contains
additional noise that will confound the fitting routine. Assuming you
have resized the covariance output as above, this means you should
only fit from the second point onwards. Set parameter restrictions as
follows: 0 ≤ G0 ≤ 2, −0.1 ≤ G∞ ≤ 0.1, 2 ≤ a ≤ 6, and 0 ≤ τD ≤ 106.
Set starting values to: G0 = 0.1, G∞ = 0, a = 3, and τD = 1.

� Generate plots of the autocorrelation functions and their fits. To con-
tinue the Gaussian example from above, to plot the original curve and
my fit to it, I would use a line such as plot(X, Y, X, gaussfit(X)).
The statement gaussfit(X) uses the fit stored in gaussfit to generate
y-coordinates corresponding to the x-values contained in the vector X.

� Use the values you obtain for τD to estimate the diffusion constants of
the beads and DNA using the formula above. To do this, you will need
to directly access the final value of the parameter τD from your fits.
This can be done by typing the name of the fit, followed by a period
and the parameter name. For instance, if I wanted to access the mean
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of the Gaussian fit of above, I would type gaussfit.mu. Substitute
your value of τD into the formula above for the diffusion coefficient,
estimating the lateral radius to be 1.5 µm. Don’t forget to keep track
of your units!

� Finally, use the diffusion coefficients you calculate to estimate the ra-
dius of the beads and of the DNA (if it were assumed to be spherical).
The experiments were performed in water at 25◦C; the viscosity of
water at that temperature is η = 8.90× 10−4 Pa s.
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