
CH163: HW4 
Due 10/13/22 

 
 
Howard problems 5.2, 5.4 
 
Problem 3) Variance of a binomial distribution 
Consider a two-state system where the probability of being in state A is PA and the probability of being in 
state B is PB (so PA + PB = 1).  The total number of particles is n and the number in state A is nA.  In class 
we said that the variance in nA is σ𝐴𝐴2 = 𝑛𝑛𝑃𝑃𝐴𝐴𝑃𝑃𝐵𝐵.  Let’s prove this. 
 

a) First consider a single particle.  What values can nA take on?  Draw a probability distribution 
for nA in this case.  Calculate the mean, 〈𝑛𝑛𝐴𝐴〉. 

b) Now calculate the variance, 〈(𝑛𝑛𝐴𝐴 − 〈𝑛𝑛𝐴𝐴〉)2〉.  Evaluate the quantity inside the 〈 〉 for each 
value of nA, and then weight that outcome by the probability of that value of nA.  Simplify your 
result as much as possible. 

c) Use the central limit theorem to calculate the mean and variance of nA when the number of 
particles, n, is large. 

 
Problem 4) Krogh Analysis 
In 1919 August Krogh developed a model for the spacing of capillaries in tissue.  The essential idea is 
that capillary spacing is set by the diffusion of oxygen from the capillaries to the surrounding tissue:  if the 
capillaries are too far apart, the tissue doesn’t get enough oxygen.  In this problem we will work through 
Krogh’s model.  Krogh’s original paper is included in the assignment too. 

 
Assume that the concentration of oxygen in the capillaries is constant (oxygen is continually replenished 
by blood flow).  Oxygen diffuses outward and is consumed at a constant rate within tissue.  Thus the 
concentration of oxygen satisfies: 
 

. 
 



D is the diffusion coefficient of oxygen in tissue, M is the rate of consumption of oxygen (assumed to be 
independent of local oxygen concentration). 

 
a) Verify that this equation is solved by the steady-state concentration profile: 

 
where Cc is the concentration in the capillary, r is the radius of the capillary and R is the radius of the 

piece of tissue served by that capillary (hint: remember to use cylindrical coordinates!). 
 
b) Try plugging in some reasonable numbers:   Exercise physiologists tell us that a person running 

consumes about 60 ml/min of oxygen gas, per kg body weight.  The diffusion coefficient of oxygen in 
normal tissue is about 4 × 10-5 cm2/s.  The concentration of free oxygen in blood plasma (which is 
different from the oxygen bound to hemoglobin) is about 0.05 mM.  Assume that tissue has a density of 
1g/mL and that a capillary has a radius of 5 µm.  Make a plot of the oxygen concentration at x = R as a 
function of R. 

c) How closely should capillaries be spaced so that no tissue becomes anoxic (i.e. deprived of 
oxygen)? 

 
In tumors, one cell type starts to proliferate wildly.  Once the tumor exceeds a critical size, it would die 
unless it recruited more blood vessels to supply the inside of the tumor with oxygen (a process called 
angiogenesis).  One approach to cancer therapy is to try to block angiogenesis. 
 
 
Problem 5) Simulation of a double-well potential 
This problem uses the Langevin function you wrote last week.  Here you will use it to 
simulate motion in a double-well potential  
 
Write a script to simulate motion in a double-well potential: 
 

a) Run a simulation with the conditions: 
 
D = 10-10 m2/s:  This corresponds to a ~4 nm diameter particle in water. 
dt = 10-3 s 
nsteps = 100000: This corresponds to 100 s of data. 
T = 298 K: Room temperature. 
x0 = 0 
X = (-1000:1000)*1e-8: This corresponds to a field of view from -10 µm to 10 µm. 
 
U = a x - ½ k x2 + ¼ m x4,  
 
Try a = 6 x 10-16 N, k = 1.8 x 10-9 N/m, and m = 70 N/m3. 
 b) Plot a trajectory of the particle with the axes appropriately labeled in units of 
seconds and microns. 
 c) Submit a plot of U(x) in units of kBT, and on the same axis a histogram of the 
probability distribution for x.  You can scale the amplitude of the probability distribution 
to give it approximately the same scale as U(x). 
 d) You should find that the potential has two minima, and the probability 
distribution has two maxima.  Calculate the ratio of the populations in the two wells, and 
compare to the expected Boltzmann factors for the two wells. 



 e) Make a histogram of the dwell times in each of the wells (you may need to run 
the simulation multiple times to accumulate enough statistics).  Fit the histogram to a 
single exponential decay, and compare the time constant to what you would expect 
from Kramers’ theory.  Do the two agree? 
 
 
Problem 6) Motion in a washerboard potential 
 
Consider a single particle subject to a sinusoidally varying potential, 

kxAxU sin)( = , 
and let the particle have a diffusion coefficient D and a free space drag coefficient γ.  This is a decent 
model for a DNA-binding protein (e.g. Human oxoguanine DNA glycosylase 1 (hOgg1) enzyme diffusing 
along DNA).  To learn more about proteins migrating along DNA, see: 
 

P. C. Blainey, A. M. van Oijen, A. Banerjee, G. L. Verdine, and X. S. Xie 
“A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with 
DNA,” PNAS 103 5752-5757 (2006). 

 
The particle will occasionally hop from one local minimum to the next.  Over a time long compared to the 
hopping time, the particle will appear to perform a 1-D random walk. 

a) Calculate an effective diffusion coefficient, Deff for the long-time random walk. (Hint: calculate the 
mean time between steps using Kramers’ Theory, and then apply the central limit theorem). 

b) Now imagine that a uniform weak force is applied to the particle pulling it to the right, so 
FxkxAxU −= sin)(  

The particle then experiences a “washerboard” potential.  The particle will now undergo a biased 
random walk, hopping to the right more often than to the left.  Calculate an effective drag coefficient 
for the particle at long times, so the velocity effFv γ/=  

c) Do Deff and γeff obey the Stokes-Einstein relation? 
 


