Electrophysiology

Chem 163 11 Oct. 2022

Today's lecture is from

lons set the equilibrium potentials

$$E_{\rm ion} = \frac{RT}{zF} \ln \frac{[\rm Ion]_{out}}{[\rm Ion]_{in}}$$
$$E_{\rm ion} \approx 62 \log \frac{[\rm Ion]_{out}}{[\rm Ion]_{in}} \quad (\rm mV)$$

DT

Equilibrium Potentials

Na⁺
$$62 \log \frac{145}{5} = 90 \text{ mV}$$

 $62 \log \frac{145}{15} = 61 \text{ mV}$

$$K^+ \qquad 62 \log \frac{5}{140} = -90 \text{ mV}$$

$$Cl^{-} -62 \log \frac{110}{4} = -89 \text{ mV}$$

Ca²⁺ 31 log
$$\frac{2.5}{10^{-4}}$$
 = 136 mV
31 log $\frac{5}{10^{-4}}$ = 146 mV

Zeroth order picture of a spike

Ion channel conductances depend on voltage

 $I_{\rm K} = g_{\rm K} \left(V - E_{\rm K} \right) \quad I_{\rm Na} = g_{\rm Na} \left(V - E_{\rm Na} \right), \quad I_{\rm Ca} = g_{\rm Ca} \left(V - E_{\rm Ca} \right), \quad I_{\rm Cl} = g_{\rm Cl} \left(V - E_{\rm Cl} \right)$

 $I = C\dot{V} + I_{\rm Na} + I_{\rm Ca} + I_{\rm K} + I_{\rm Cl}$

 $C\dot{V} = I - g_{\text{Na}}(V - E_{\text{Na}}) - g_{\text{Ca}}(V - E_{\text{Ca}}) - g_{\text{K}}(V - E_{\text{K}}) - g_{\text{Cl}}(V - E_{\text{Cl}})$

Patch clamp protocols

A note on units:

[g] = Siemens (nS, pS) or S/cm² or S/uF

 $C_m \simeq 1 \text{ uF/cm}^2$, always

Leak conductance

Cartoon of a sodium channel

What is the steady-state activation function of a voltage-gated ion channel?

closed
$$\stackrel{+V}{\longleftarrow}$$
 open

Define *m* = P(open)

$$\frac{m}{1-m} = K_{eq} e^{\frac{qv}{k_B T}} \qquad \text{Assuming +V favors open state}$$

$$m\left(1+K_{eq}e^{\frac{qV}{k_BT}}\right)=K_{eq}e^{\frac{qV}{k_BT}}$$

$$m = \frac{K_{eq} e^{\frac{qV}{k_B T}}}{\left(1 + K_{eq} e^{\frac{qV}{k_B T}}\right)} \qquad \times \frac{K_{eq}^{-1} e^{-\frac{qV}{k_B T}}}{K_{eq}^{-1} e^{-\frac{qV}{k_B T}}}$$

$$m = \frac{1}{\left(1 + K_{eq}^{-1}e^{-\frac{qV}{k_BT}}\right)}$$
 Define: $K_{eq}^{-1} = e^{\frac{qV_{1/2}}{k_BT}}$ $k = \frac{k_BT}{q}$

$$m = \frac{1}{\left(1 + e^{(V_{1/2} - V)/k}\right)}$$

Simple single-channel model

$$C\dot{V} = I - g_{\rm L}(V - E_{\rm L}) - \overbrace{g_{\rm Na} m_{\infty}(V) (V - E_{\rm Na})}^{\rm instantaneous I_{\rm Na,p}}$$

 $m_{\infty}(V) = 1/(1 + \exp\{(V_{1/2} - V)/k\})$

Phase diagram of simple model

Persistent sodium current model shows bistability

Saddle node bifurcation

Basins of attraction

Hysteresis

How does a tissue polarize?

Quadratic integrate and fire neuron

 $\dot{V} = I + V^2$, if $V \ge V_{\text{peak}}$, then $V \leftarrow V_{\text{reset}}$

Classes of voltage-dependent behavior

This cartoon only models ion channel 'steady-state' behavior. Over very short time channel activation kinetics are important. Over very long times channel inactivation and recovery kinetics are important.

(More) realistic neuron model

Stable limit cycle

Analyzing stability around 2-D fixed points

Arbitrary 2-D vector-field

$$\dot{x} = f(x, y)$$

 $\dot{y} = g(x, y)$

$$f(x,y) = a(x - x_0) + b(y - y_0) + \text{higher-order terms},$$

$$g(x,y) = c(x - x_0) + d(y - y_0) + \text{higher-order terms},$$

$$a = \frac{\partial f}{\partial x}(x_0, y_0), \qquad b = \frac{\partial f}{\partial y}(x_0, y_0),$$
$$c = \frac{\partial g}{\partial x}(x_0, y_0), \qquad d = \frac{\partial g}{\partial y}(x_0, y_0)$$

Linearized dynamics around a fixed point

Let:

 $u = x - x_0$

$$w = y - y_0$$

The dynamics then become:

$$\left(\begin{array}{c} \dot{u} \\ \dot{w} \end{array}\right) = \left(\begin{array}{c} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} u \\ w \end{array}\right)$$

Let:

$$L = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

So: $\dot{U} = LU$ The solution is:

$$\boldsymbol{U}(\boldsymbol{t}) = \boldsymbol{e}^{Lt}\boldsymbol{U}(\boldsymbol{0})$$

Define: $\tau = \operatorname{tr} L = a + d$

 $\Delta = \det L = ad - bc$

The qualitative dynamics depend on the eigenvalues of L:

$$\lambda_1 = \frac{\tau + \sqrt{\tau^2 - 4\Delta}}{2}$$
$$\lambda_2 = \frac{\tau - \sqrt{\tau^2 - 4\Delta}}{2}$$

Classification of equilibria

Types of fixed points

Include Na_v channel inactivation

Na_v Activation

Na_v Inactivation

Optical electrophysiology in engineered cells

Na_V 1.3, 1.5, 1.7, 1.9

eLife, 10.7554/eLife.15202, (2016)

Ion channel dynamics described by two-state gates

Recall for a two-state system:

 k_f and k_b depend on voltage:

$$k_f = k_f^0 e^{\frac{\alpha q (V - V_{1/2})}{k_B T}} \qquad \qquad k_b = k_b^0 e^{-\frac{(1 - \alpha)q (V - V_{1/2})}{k_B T}}$$

HH Equations

$$C\dot{V} = I - \overbrace{\overline{g}_{\mathrm{K}}n^{4}(V - E_{\mathrm{K}})}^{I_{\mathrm{K}}} - \overbrace{\overline{g}_{\mathrm{Na}}m^{3}h(V - E_{\mathrm{Na}})}^{I_{\mathrm{Na}}} - \overbrace{\overline{g}_{\mathrm{L}}(V - E_{\mathrm{L}})}^{I_{\mathrm{L}}}$$

$$\begin{split} \dot{n} &= (n_{\infty}(V) - n)/\tau_n(V) , \\ \dot{m} &= (m_{\infty}(V) - m)/\tau_m(V) , \\ \dot{h} &= (h_{\infty}(V) - h)/\tau_h(V) , \end{split} \qquad n_{\infty} &= \alpha_n/(\alpha_n + \beta_n) , \qquad \tau_n = 1/(\alpha_n + \beta_n) , \\ m_{\infty} &= \alpha_m/(\alpha_m + \beta_m) , \qquad \tau_m = 1/(\alpha_m + \beta_m) , \\ h_{\infty} &= \alpha_h/(\alpha_h + \beta_h) , \qquad \tau_h = 1/(\alpha_h + \beta_h) \end{split}$$

$$\begin{array}{ll} \alpha_p(V_m) = p_{\infty}(V_m)/\tau_p & \alpha_n(V_m) = \frac{0.01(10-V_m)}{\exp\left(\frac{10-V_m}{10}\right)-1} & \alpha_m(V_m) = \frac{0.1(25-V_m)}{\exp\left(\frac{25-V_m}{10}\right)-1} & \alpha_h(V_m) = 0.07\exp\left(\frac{-V_m}{20}\right) \\ \beta_p(V_m) = (1-p_{\infty}(V_m))/\tau_p & \beta_n(V_m) = 0.125\exp\left(\frac{-V_m}{80}\right) & \beta_m(V_m) = 4\exp\left(\frac{-V_m}{18}\right) & \beta_h(V_m) = \frac{1}{\exp\left(\frac{30-V_m}{10}\right)+1} \end{array}$$

Spatial structure of membrane voltage

Rall, Wilfrid. "Branching dendritic trees and motoneuron membrane resistivity." *Experimental neurology* 1.5 (1959): 491-527.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302937/

Cable equation for a membrane tube

Material properties:

$$r_m=rac{R_m}{2\pi a}$$
 $c_m=C_m2\pi a$ $r_l=rac{
ho_l}{\pi a^2}$

Constitutive relations:

$$rac{\partial V}{\partial x} = -i_l r_l \qquad i_c = c_m rac{\partial V}{\partial t} \qquad i_r = rac{V}{r_m}$$

Conservation of charge

$$rac{\partial i_l}{\partial x} = -i_m = -\left(rac{V}{r_m} + c_m rac{\partial V}{\partial t}
ight)$$

Cable equation

$$rac{1}{r_l}rac{\partial^2 V}{\partial x^2}=c_mrac{\partial V}{\partial t}+rac{V}{r_m}$$

Dimensionless

Propagation of APs

$$C V_t = \frac{a}{2R} V_{xx} + I - I_{\mathrm{K}} - I_{\mathrm{Na}} - I_{\mathrm{L}}$$

https://www.nature.com/articles/nn.4157#ref-CR7

https://www.quantamagazine.org/how-computationally-complex-is-a-single-neuron-20210902/

Neuron

CellPress

Article

Single cortical neurons deep artificial neural networks

Beniaguev,^{1,3,*} Idan Segev,^{1,2} and Michael London^{1,2}

nd and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel ment of Neurobiology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

ontact pondence: david.beniaguev@gmail.com doi.org/10.1016/j.neuron.2021.07.002

ARY

ng recent advances in machine learning, we introduce a systematic approach to characterize ns' input/output (I/O) mapping complexity. Deep neural networks (DNNs) were trained to faithfully at the I/O function of various biophysical models of cortical neurons at millisecond (spiking) resolutemporally convolutional DNN with five to eight layers was required to capture the I/O mapping of a tic model of a layer 5 cortical pyramidal cell (L5PC). This DNN generalized well when presented with swidely outside the training distribution. When NMDA receptors were removed, a much simpler irk (fully connected neural network with one hidden layer) was sufficient to fit the model. Analysis DNNs' weight matrices revealed that synaptic integration in dendritic branches could be conceptuas pattern matching from a set of spatiotemporal templates. This study provides a unified charactern of the computational complexity of single neurons and suggests that cortical networks therefore a unique architecture, potentially supporting their computational power.

Spiking HEK cells as an excitable medium

Phys. Rev., X 6, 031001 (2016)

Electrical waves can be patterned...

By cell growth

Or by light

Harry McNamara

Phys. Rev., X 6, 031001 (2016)