Chem 163

10 Nov. 2022 Adam E. Cohen

Mechanics of rods

Fibrils and Us

actin & tubulin

rope of carbon nanotubes

j-aggregates

prions

sickle-cells

amyloids

cataracts

DNA Bending

Nucleic Acid Builder (NAB) Macke and Case, *Mol. Model. Nucleic Acids* **682**, 379 (1998).

DNA bending in nature

Nucleosome (1AOI) 25°/bp

Catabolite activator protein (1CGP) 40°/bp

MutS + G-T mismatch (1E3M) 60°/bp at mismatch

Redundancy of codons allows for an underlying mechanical code

The wormlike chain model of DNA bending

- Problems with using the WLC to describe DNA bending in the context of protein binding
 - WLC treats DNA as mechanically homogeneous, but interactions reflect local variation (sequence, damage, modifications)
 - Proteins induce higher curvature than is experimentally accessible
- Idea: induce curvature in short pieces of DNA

Bending of a rod

Relation of bending modulus to material properties

(easiest to see by calculating I_z and then applying perpendicular axis theorem)

Why are microtubules hollow?

Coherent bending (I $\sim R^4$) vs. incoherent bending (I $\sim R^2$)

Mechanics of rods

$$H = \int_{0}^{L} \frac{1}{2} \alpha \left(\frac{\partial \theta}{\partial s}\right)^{2} ds$$

Loop energy:
$$\frac{\partial \theta}{\partial s} = \frac{1}{R}$$

 $U_{loop} = 2\pi R \frac{1}{2} \alpha \left(\frac{1}{R}\right)^2$
 $= \frac{\pi \alpha}{R}$

R

Consider
$$U_{loop} = \frac{1}{2}k_BT$$
 Persistence length $l_p = \frac{\alpha}{k_BT}$
 $\Rightarrow R = 2\pi \frac{\alpha}{k_BT}$ e.g. for dsDNA, $l_p \approx 53$ nm

Autocorrelation of $\langle \mathbf{t}(s_a) \cdot \mathbf{t}(s_b) \rangle = e^{-|s_a - s_b|/l_p}$ unit tangent

Example: DNA bending around a histone

Histone: R ~ 4 nm, 2 revolutions U_{bend} ~ 70 k_BT

Rods with forces: Euler buckling

$$U_{tot} = \frac{1}{2} \alpha \int_{0}^{L} \left(\frac{d\theta}{ds}\right)^{2} ds - F(L-z)$$

Guess: $\theta(s) = A \cos \frac{\pi s}{L}$
 $\left(\frac{d\theta}{ds}\right)^{2} = \left(\frac{A\pi}{L} \sin \frac{\pi s}{L}\right)^{2}$
 $U_{bend} = \frac{1}{2} \alpha \left(A\frac{\pi}{L}\right)^{2} \frac{L}{2}$
 $= \frac{\alpha A^{2} \pi^{2}}{4L}$
 $T = \int_{0}^{L} \cos \left(A \cos \frac{\pi s}{L}\right) ds$
 $= L - \frac{A^{2}L}{4}$
 $U_{mech} = -\frac{FA^{2}L}{4}$

$$U_{tot} = A^2 \left(\frac{\alpha \pi^2}{4L} - \frac{FL}{4} \right)$$

$$F_{buckle} \ge \frac{\pi^2 \alpha}{L^2} \qquad L_{buckle} \ge \sqrt{\frac{\pi^2 \alpha}{F}}$$

The elasticae

For a rod under compression

$$U(s) = \frac{\alpha}{2} \left(\frac{\partial \theta}{\partial s}\right)^2 + F \cos\theta$$

Lagrangian of a physical pendulum

$$\mathcal{L} = KE - PE$$
$$= \frac{1}{2}mL^{2}\left(\frac{d\theta}{dt}\right)^{2} + mgL\cos\theta$$

Lagrangian is minimized via Calculus of Variations

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) = \frac{\partial \mathcal{L}}{\partial q}$$

For a rod:

$$\frac{\mathrm{d}}{\mathrm{ds}} \alpha \left(\frac{\partial \theta}{\partial \mathrm{s}} \right) = -F \sin \theta$$

Small-angle limit:

$$\alpha \frac{d^2\theta}{ds^2} = -F\theta$$

$$\theta(s) = A \sin \sqrt{\frac{F}{\alpha}} s + B \cos \sqrt{\frac{F}{\alpha}} s$$

 \rightarrow Newton's eqns of motion

The wormlike chain model of DNA bending

- Problems with using the WLC to describe DNA bending in the context of protein binding
 - WLC treats DNA as mechanically homogeneous, but interactions reflect local variation (sequence, damage, modifications)
 - Proteins induce higher curvature than is experimentally accessible
- Idea: induce curvature in short pieces of DNA

The wormlike chain model of DNA bending

- Problems with using the WLC to describe DNA bending in the context of protein binding
 - WLC treats DNA as mechanically homogeneous, but interactions reflect local variation (sequence, damage, modifications)
 - Proteins induce higher curvature than is experimentally accessible
- Idea: induce curvature in short pieces of DNA

Experiments consistent with elastic rod model

Bustamante et al. (2000), Curr. Opin. Struct. Biol

Peters and Maher (2010), Quarterly Rev. of Biophys.

WLC model is powerful because it is insensitive to molecular details

but sometimes details matter...

Current experiments are limited to thermally accessible bending energy

Where might the homogeneous elastic rod model fail?

• Particular sequences

Nucleosome positioning sequences; protein binding sites

• Regions of high imposed curvature

Under bound proteins; in a virus capsid; regulatory loops

Damage sites

Thymine dimers, oxidation, alkylation, hydrolysis, deamination

• Base pair mismatches

- Nicks
- Gaps
- Epigenetic modifications

Nucleosome positioning sequences

Segal, Eran, et al. "A genomic code for nucleosome positioning." *Nature* 442.7104 (2006): 772-778.

Constant compressive force

Molecular vise

Force clamped at A-T basepairing force (9 pN [1])

 $F_{AT} \approx 9 \text{ pN}[1]$ persistence length = $\frac{\alpha}{k_B T} \approx 44 - 55 \text{ nm}[2]$ $A-T (9 \text{ pN}) \qquad 45 \text{ bp} \qquad 15 \text{ nm}$ $G-C (21 \text{ pN}) \qquad 29 \text{ bp} \qquad 10 \text{ nm}$ $L_{buckle} = \sqrt{\frac{\pi^2 \alpha}{F}} \approx 14.1 - 15.7 \text{ nm} = 41 - 46 \text{ bp}$ 1. Woodside *et al.*, *PNAS* **103**, 6190 (2006).

2. Lu, Weers, Stellwagen, *Biopolymers* **61**, 261 (2002).

Predictions of linear elasticity

Data collection: native PAGE

Increasing complement length

Euler buckling in dsDNA

A simple statistical mechanical model

Kinking by local melting

- Hypotheses:
 - Kinking should correlate with "meltability"
 - Kinked structures should be recognizable as single-stranded DNA

DNA Mismatches

S1 nuclease cleavage

DNA Pulley

Nano-mechanics of DNA

λ DNA construct

Rotating force

Varying force

Silicon nitride knife

DNA Pulley setup

LED

Simple scanning

$$r = l_o - \sqrt{d^2 + (y_p + y_o)^2}$$

 l_o : total extension; d: capillary distance; y_o : offset in y

Bead trajectory

Fiducial marker: EcoRI

EcoRI-incubated λ DNA

λ DNA with 10 nM EcoRI, 1 mM CaCl₂

EcoRI-incubated λ DNA

Asymmetry in the direction

Detection efficiency

EcoRV bound to DNA

