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1 Misc. Announcements

Thus far we have restricted our discussion to non-interacting particles, possibly in the pres-
ence of an externally imposed potential. Indeed, there are still a great many more things we
could discuss considering only the Brownian motion of non-interacting particles. But in real-
life there are many interactions. These interactions make life interesting and considerably
more complicated.

Today we will take a whirlwind tour of the ways in which molecules in solution push and
pull on each other. This is a truly fascinating area, and could be the subject of an entire
course. It is one of the few areas in which an effect obtained in fourth order perturbation
theory in quantum electrodynamics, taking into account the zero-point energy of the vacuum,
has important biological consequences. We’ll get to that in a bit. Some important effects
(electrostatic screening and polymeric forces) will have to wait until we cover those topics
separately.

I’ve put on the website the first chapter of a book by Henry Margenau on the theory of
intermolecular forces. This chapter is a fascinating historical overview of how people thought
about intermolecular forces going all the way back to the Ancient Greeks. If you read it,
you’ll see that people were pretty clever even before they knew quantum mechanics. I highly
recommend reading it.

2 What the ancients knew

It has long been appreciated that some mysterious forces hold the constituents of matter
together. These forces seem to act only over a very short range, but to be capable of being
quite strong (try breaking a rock in half). From the time of Newton until the mid 19th
century, people hoped to find a universal law of cohesion, akin to Newton’s universal law of
gravitation. People knew that it had to be a very short-range law because cohesion seems
to play no role for any macroscopically sensible separation between objects. In fact, Gauss,
who had no knowledge of electrostatics or quantum mechanics, derived that these forces had
to fall off with distance at least as fast as 1/r6. We’re going to go through the argument
because it is so simple and elegant.

Consider two blobs of material. If the forces between each element of blob 1 and each
element of blob 2 are additive (that is the outer skin of the material does not shield the
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interactions due to deeper components), then we can expect the total interaction energy
to be proportional to the product of the volumes of the two masses (or equivalently to the
product of their masses). Let’s say that the interaction energy varies as 1/rn. Then we can
guess that the interaction energy will have the form:

U = U0
V1V2

rn
. (1)

Now suppose we scale all the dimensions in our system by some amount k. Then, as a
function of k, the interaction energy is:

U(k) = U0
V1V2k

6

rnkn
. (2)

Here is the part where we have to apply some physical intuition. We know that inter-
molecular forces are significant for microscopic bodies, but not for macroscopic ones. This
means that if we scale all dimensions in the system by a factor k, we want the net interaction
energy to decrease as k increases. Since U ∝ k6−n, we require n > 6.

This is an amazing result: we have inferred the long-range form of the retarded van der
Waals-Casimir interaction from purely geometric arguments.

Now we’re going to catalog some of the intermolecular forces found in nature. We’ll see
that many of them vary as 1/rn with n = 6. The contradiction between this result and the
requirement n > 6 that we just derived wasn’t resolved until Casimir and Polder introduced
the zero-point energy of the vacuum into the calculations in 1948.

Note that electrostatic forces, which fall off like 1/r are allowed by a loophole in the
above argument: we assumed that the forces all had the same sign. Electrostatic forces
come in two varieties, attractive and repulsive, leading to a complete cancelation for neutral
objects–even though the component forces are long-ranged.

3 Coulombic forces, torques

If you have two charged bodies with charge distributions ρ1(r) and ρ2(r), their mutual
electrostatic energy of interaction is:

U =
1

4πϵ

∫
dr1

∫
dr2

ρ(r1)ρ(r2)

|r1 − r2|
, (3)

That is, each piece of charge density in body one interacts with each piece of charge density
in body two, and all of these interaction energies add. The above equation is all you need
if you’re trying to calculate electrostatic intermolecular forces on a computer. But when
thinking about things it’s often useful to have approximation schemes.

3.1 Multipole expansion

The multipole expansion is the most convenient approximation scheme. Here is how it works.
I’ll simply state without proof, that the potential of a bounded charge distribution can be
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rewritten as:

V (R) =
1

4πϵ

∞∑
n=0

1

R(n+1)

∫
dr′(r′)nPn(cos θ)ρ(r

′), (4)

where θ is the angle between r′ and R, and Pn(x) is the n
th Legendre polynomial. The point

of this expansion is that it breaks up the potential into a series of independent terms, each
of which varies as 1/rn. So for instance a point charge experiences a 1/r interaction with
the monopole term, 1/r2 with the dipole, and so on.

Now if the test body has some complicated shape, we can expand the interaction energy
in powers of the local field, finding:

U = qV (0)− p · E(0)− 1

6

∑
i,j

Qij
∂Ej

∂xi

∣∣∣∣
0

+ . . . . (5)

That is, a charge interacts with a potential, a dipole interacts with an electric field, a
quadrupole interacts with field gradients, and so on. The traceless quadrupole tensor is
defined as:

Qij =

∫
(3xixj − r2δij)ρ(r)dr. (6)

[SHOW CHART ON INTERMOLEC FORCES FROM ISRAELACHVILI]

4 Induced-dipole interactions

It is uncommon to have static, fixed charges in squishy system. Usually charges are tumbling
and whirling around, and this makes life much more interesting. We’ll start with a seemingly
trivial example, and then work our way up to some interesting results.

Does a charge pull on a neutral molecule with no intrinsic dipole or multipole moments?
Yes! The reason is that the charge creates a field which can induce an asymmetric charge
distribution in the neutral species. The polarizability, α, of a molecule is defined by the
relation:

p = αE (7)

where p is the induced dipole moment and E is the applied electric field. Now the electric
field from a point charge is

E =
qr̂

4πϵr2
. (8)

The force on a dipole is F = p · ∇E, or

F = αE · ∇E. (9)

But we have the mathematical identity:

E · ∇E =
1

2
∇ |E|2 . (10)

This means that we can write the force as the gradient of something. This something has to
be the negative of the interaction potential. So we have an interaction potential:

U = −1

2
α |E|2 . (11)
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This is a broadly useful result. When E is due to a charged ion, this interaction energy is the
main enthalpic contribution to the solubility of the ion in water: water is very polarizable,
so the charge-induced dipole interaction is strong (in water the electric field near an ion
can be so strong that water molecules are strongly oriented and the linear response picture
used here breaks down–but the principle still applies). If E is an oscillating electric field, this
energy is still nonzero because the time-average of |E|2 does not vanish. So for instance when
E is an optical-frequency electric field due to a tightly focused laser beam, we have laser
tweezers: dielectric particles are attracted to the region where |E|2 is greatest, which is the
region of maximal light intensity. When E is due to a radiofrequency electric field we have
dielectrophoresis, which is another technique for moving small particles around in a fluid.
When E is due to a classical or quantum dipolar fluctuation of another nearby molecule we
have the van der Waals force.

Before we plunge ahead, there’s a subtlety in the above equation which bears considera-
tion. It’s the factor of 1/2 in front. Recall from the discussion of the multipole interaction
that we said the interaction energy of a dipole with an electric field is −p ·E. Well if p = αE,
why couldn’t we simply write:

Utot = −α |E|2? (12)

Why did we go about this convoluted line of argument, calculating the force, then integrating
it to get the potential? And where did that extra factor of 1/2 come from? I won’t tell you
the answer, but a hint is that it has to do with the fact that we’re considering an induced
dipole, not a permanent dipole. Think about it.

Let’s run through two examples. If E is from a fixed charge q, then we have:

U = − q2α

2(4πϵ)2r4
. (13)

Good. If E is due to a dipole, then

U = −p2α(1 + 3 cos2 θ)

2(4πϵ)2r6
, (14)

where θ is the angle between the dipole and the intermolecular axis. The only part of this
expression that isn’t totally obvious is the angular dependence, which comes out if you work
all the electrostatics. I won’t bore you with the derivation. Interestingly, if the dipole is
freely rotating, this interaction energy does not average to zero.

5 Keesom forces

It is a useful mathematical fact that the average of cos2 θ over a sphere is 1/3, to wit:

⟨cos2θ⟩Ω =
1

4π

∫ 2π

0

dϕ

∫ π

0

dθ cos2(θ) sin(θ)dθdϕ

=
1

2

∫ 1

−1

x2dx

=
1

3
. (15)
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Applying this useful mathematical fact, we see that the interaction energy between a ran-
domly tumbling dipole and a polarizable particle is:

⟨U⟩Ω = − p2α

(4πϵ)2r6
. (16)

Suppose we have two randomly tumbling dipoles. It’s pretty simple to show that if you
average the 1/r3 dipole-dipole interaction energy over all possible relative orientations of the
dipoles, the energy averages to 0. But a randomly tumbling dipole has a polarizability: put
it in an electric field, and its tumbling will be slightly biased in favor of orientations that have
a lower interaction energy with the electric field. This bias leads to an average net dipole
moment, i.e. a polarization. So the electric field of one randomly tumbling dipole slightly
biases the tumbling of its neighbor. And vice versa. That is, the electrostatic interaction
introduces a correlation in the random tumbling of the dipoles, which leads to a net attractive
interaction. Now we’ll calculate this effect by doing something tricky. Hold onto your seats.

Remember the equipartition theorem? For every degree of freedom with energy quadratic
in displacement, we get 1

2
kBT of energy. It relates the linear response of a system to its

spontaneous fluctuations. Well, here we’ve got fluctuating dipoles and we’re interested in
their linear response. The energy of a dipole in an electric field is 1

2
α⟨|E|2⟩, which we can

rewrite as 1
2α
⟨|∆p|2⟩. We set this equal to 1

2
kBT , from which we get:

αxx =
1

kBT
(⟨p2x⟩ − ⟨px⟩2), (17)

where αxx relates the x-component of the induced polarization to the x-component of the
applied electric field, and px is the x-component of the molecule’s dipole moment. For a
freely rotating dipole in the absence of an electric field, ⟨px⟩ = 0 and ⟨p2x⟩ = 1

3
p2 (recall the

average of cos2(θ) over a sphere). Thus we have the useful result:

αxx =
p2

3kBT
. (18)

Incidentally, the same result applies to the magnetic susceptibility of a freely tumbling mag-
netic dipole in a magnetic field. And we saw when we did the Freely Jointed Chain model of
polymers how the same argument yields an analogous formula for the force-extension curve.

Plugging the above result into the formula for the interaction energy of a dipole with a
polarizable particle we get:

U = − p21p
2
2

3(4πϵ)2kBTr6
. (19)

This energy is called the Keesom energy and is the classical analog of the van der Waals
force. The Keesom energy was known long before quantum theory was established. Using
the FDT we can rewrite the Keesom energy in a more suggestive way:

U = −3α1α2kBT

(4πϵ)2r6
. (20)

One way to think about this is that a thermal fluctuation induces a dipole moment in particle
1. This dipole then generates an electric field at particle 2 and polarizes particle 2. Then
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the thermally induced and electrically induced dipoles interact to generate a force. The 1/r6

dependence arises because the dipole field has to travel the intermolecular distance twice:
once to polarize the second particle, and once to interact with the polarized second particle.

Another way to think about the Keesom force is to start with the formula for the inter-
action energy of two dipoles with fixed orientations:

U =
3(p1 · n̂)(p2 · n̂)− p1 · p2

4πϵ0r3
, (21)

where n̂ is the unit vector along the line joining the two molecules. To see that this en-
ergy is zero if the two dipoles are rotating completely freely, note that ⟨p1 · n̂⟩ = 0 and
⟨p1⟩ · ⟨p2⟩ = 0 (We factored the expectation values because we assumed p1 and p2 were
fluctuating independently). However, we know that even if two quantities individually have
zero expectation value, their product need not have zero expectation value. Due to the
electrostatic interaction, the fluctuation of the two molecules becomes coupled, and we get
the expression for the energy given above.

The result as expressed here applies more generally than just to tumbling dipoles. Any
polarizable particle experiences this classical form of the van der Waals force when it is at
finite temperature.

6 van der Waals forces

So far we have considered only classical contributions to the intermolecular force. There are
important quantum contributions too. The essential idea is that quantum fluctuations can
become correlated just as can classical fluctuations. Even for a molecule with no net dipole
moment, the dipole operator is a fluctuating quantity. This is because the dipole operator
does not commute with the Hamiltonian. Thus if the molecule is in its ground electronic
state, successive measurements of the dipole moment yield different answers. Thus even
though the expectation of the dipole operator ⟨p̂⟩ = 0, it is usually the case that ⟨p̂2⟩ ≠ 0.

I will state, without derivation, the London dispersion energy:

U = −3

4

h̄ωα1α2

(4πϵ)2r6
. (22)

You see here that the energy is again related to the polarizabilities of both particles, in a
symmetric way. The energy source leading to the spontaneous fluctuations is h̄ω, where ω is
a characteristic electronic absorption frequency. For most non-dipolar molecules h̄ω ≫ kBT ,
so the quantum term actually dominates.

There are some beautiful formulas that interpolate smoothly between the quantum and
classical limits, which I’m happy to discuss with you outside of class.

7 Retardation

Now I will discuss in a qualitative sense how Casimir and Polder found that intermolecular
forces should fall off faster that 1/r6. The basic idea is that we have been assuming that the
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electromagnetic signal propagates instantaneously from one molecule to the other. In fact,
the signal propagates at the speed of light. The timescale of the fluctuations is the period
of the electronic oscillations of the molecule. During one oscillation of the electrons, light
propagates a distance equal to one wavelength. So the analysis we have used applies only
when the separation between the particles is ≪ λ. In the opposite limit, we have to take into
account not only the finite propagation delay of the electromagnetic field, but the fact that
light is subject to quantum mechanics too. Namely, in a pure vacuum, at absolute zero, in
the dark, we have ⟨Ê⟩ = 0, but ⟨|Ê|2⟩ ̸= 0. This fluctuating zero-point field simultaneously
induces dipole moments in both atoms. The resulting induced dipoles interact with each
other. This interaction leads to a potential:

U = − 23α1α2h̄c

4π(4πϵ)2r7
(23)

While they seem spooky, zero-point electromagnetic fields have numerous measurable con-
sequences. Just one example is the attraction of parallel mirrors in vacuum.

[INSERT DRAWING OF TWO PARALLEL MIRRORS]
Only certain vacuum modes are allowed in between the mirrors because the mirrors

enforce the boundary condition that the tangential electric field has to be zero on their
surface. Meanwhile, everywhere else the vacuum experiences its continuum of radiation
modes. The zero-point fluctuations exert a “radiation pressure” on all surfaces. But in the
gap between the mirrors, this pressure is reduced because there are fewer modes than in the
continuum. A consequence of this is that the mirrors experience and attractive force that
scales as 1/d4.

There are classical analogs of the Casimir effect that occur in complex fluids (e.g. liquid
crystals, solutions near a phase transition, polymer solutions, etc.) where the presence of
boundaries modifies the number of states available to the system. In quantum systems you
have a zero-point energy of 1

2
h̄ω available per coordinate; in thermal systems you have 1

2
kBT .

In either case, changing the density of states can lead to forces.

8 Entropically mediated forces

We’ve seen how thermal fluctuations can lead to fluctuating dipole moments which, when
correlated via electrostatic couplings, attract each other. Thermal fluctuations can also
lead to numerous other subtle forces in solution. There are a host of subtle forces that
arise between bodies because the approach of the bodies changes the volume of phase space
available to the system. This changes the entropic contribution to the free energy, and thus
leads to a force. There are two particularly important examples of this, namely double-
layer overlap and polymeric forces. Those two examples are sufficiently complicated that
we’ll discuss them separately when we talk about electrokinetics, and polymers, respectively.
Today we’ll discuss another important effect: molecular crowding.

8.1 Displacement forces

Consider a solution containing a mixture of big particles and little particles. These might
be proteins and sugar molecules, or plastic beads of different sizes.
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The little particles exert an osmotic pressure:

Π = CNAkBT, (24)

where C is the concentration of the little guys and NA is Avogadro’s number. For a big
particle in the middle of the solution, it is constantly bombarded by little particles from
all sides, so it feels no net force. But now consider what happens if one of the big guys
approaches one of the walls of the container (the same reasoning will apply if he approaches
another big particle). Once the spacing between the big particle and the wall becomes smaller
than the diameter of the little particles, the little particles become excluded from the region
between the big particle and the wall. Now the little particles exert osmotic pressure on the
back side of the big particle, but not on the front side. Thus the big particle feels an effective
attraction towards the wall.

We can estimate the functional form for this attraction as follows. Near the point of
contact with the wall, the height of the big particle follows

h(r) ≈ 1

2

r2

R
, (25)

where R is the radius of the big particle. If the little particles have diameter d, the excluded
region has area

A = 2πdR. (26)

From this we see that the the force holding the big guy to the wall is:

F = 2πdRCNAkBT. (27)

If the big particle is to be held against the wall, then the effective potential it experiences
must be deeper than kBT . The force F is applied over a characteristic distance d, so for the
big particle to be trapped we require:

2πd2RCNA > 1. (28)

The precise numerical factors depend on the details of the geometry: a brick shape excludes
more particles than does a sphere, and a sphere against a wall excludes more particles than
do two spheres in contact. Nonetheless we can look at the scaling. Let’s call the particle
number-density CNA ≡ ν. Let’s call the volume of space excluded to little particles Vexcl.
Then little particles will cause condensation of big particles at any temperature if Vexclν > 1,
i.e. if on average there would have been more than one little particle within that excluded
volume.

This displacement effect is qualitatively similar to the Casimir effect. In the displacement
effect, two closely spaced surfaces exclude small particles, so these particles cannot exert
osmotic pressure keeping the plates apart. In the Casimir effect, two closely spaced surfaces
exclude zero-point vacuum fluctuations, so these fluctuations cannot exert radiation pressure
keeping the plates apart.
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9 Hydrophobic effect

The hydrophobic effect is not very well understood. Qualitatively this effect has to do
with the preference of water to adhere to itself (due to hydrogen bonds) than to non-polar
surfaces. If you calculate the change in surface area of the water-hydrophobic interface as
a consequence of two hydrophobic particles coming together, and multiply by the surface
tension of water (γH2O = 77 mN/m), you can get a fairly accurate estimate of hydrophobic
interaction energies.

The distance over which the hydrophobic effect acts is a matter of intense debate, but
the answer probably is just a few molecular diameters, corresponding to the distance over
which order persists in water.
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