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1 Electrostatics in solution

Much of the material we’ll cover today is in Chapters 11 and 12 of Israelachvili. It’s a
really fabulous book, and pretty easy to read. It give a good introduction to the richness of
phenomena that occur between bodies immersed in water or electrolyte solutions.

Electrostatics in solution is a complicated beast because entropy makes charges want to
move around randomly, but the charges exert long-range forces on each other. Thus each ion
feels forces not only from fixed charges, but also fluctuating forces from all the other ions.

2 Introduction

Almost everything in a cell is charged: DNA has a formal negative charge of 2 electrons
per base pair due to the phosphate groups (we’ll see that this isn’t strictly accurate in an
electrolyte solution).

Proteins have nonuniform distributions of charge due to the different amino acids (even
though they are called “amino acids”, they should more accurately be called “amino zwit-
terions” because the amino group acts as a base). In a protein the amino group and the
carboxylic acid group are both occupied by the amide bond, and the true charge of the
protein is determined by the behavior of the side groups.

For most amino acids the side groups are electrically neutral at neutral pH. Exceptions
are: Aspartic Acid (Asp) and Glutamic Acid (Glu) which have negatively charged carboxy-
late groups on the side-chains; and Lysine (Lys), Arginine (Arg), and Histidine (His) which
are positively charged.

Most lipid membranes of cells are made of a mixture of zwitterionic lipids such as phos-
phatidylcholine (PC), and anionic (negatively charged) lipids such as dioleoyl phosphatidyl
serine (DOPS).

In fact, most materials immersed in liquid develop a surface charge. Even glass, which
is seemingly inert, becomes negatively charged in water because SiOH groups on the sur-
face are slightly acidic, forming SiO- moieties. Most solids are slightly acidic or slightly
basic. Also, some solids preferentially adsorb charged species from solution. For instance,
a hydrophobic surface will adsorb surfactants from solution, and these surfactants might be
anionic or cationic. Even the air-water interface is often charged, either due to the presence
of surfactants, or because different ions actually have different affinities for this interface.
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The fact that almost everything is charged has important biological implications for the
adhesion of cells; the interactions of biomolecules; the properties of DNA; and the conduction
of neural impulses. In fact, van der Waals forces are always attractive between like bodies, so
were it not for electrostatics all the components in the cell would spontaneously aggregate.
These charges are also extremely important technologically: they are used in electrophoresis,
in microfluidics, and in purifications.

The plan for today is to discuss the charge and potential distribution around a single
charged object. Then we’ll discuss the charge-mediated forces between objects. In solutions
of multivalent counterions the mean-field description we use will break down, and we’ll
discuss ways people are trying to go beyond mean-field theory. This is a topic for much
current research.

Then we’ll discuss what happens when we have external electric fields around charged
bodies. That leads to the coupled worlds of electrophoresis and electroosmosis. The behavior
of charged bodies in solution is wondrously subtle and is a subject of much active research.

2.1 Mean-field approximation

It would be hopelessly complicated to apply Coulomb’s law to the motion of every charged
particle in a solution, and then to try a Langevin or Smoluchowski approach to the motion of
the particles. The only possibility for making progress is to make a mean-field approximation,
as follows: we assume that each charge interacts with the average density of surrounding
charges, and we ignore the fact that the motion of nearby charges might be correlated. That
is, while the real interaction energy between two pieces of solution is:

dU =
⟨ρ1ρ2⟩

4πϵϵ0r1,2
dV1dV2, (1)

we’ll approximate this energy as:

dU =
⟨ρ1⟩⟨ρ2⟩
4πϵϵ0r1,2

dV1dV2. (2)

This factorization is tantamount to ignoring fluctuations. We do this at our peril, but we are
reasonably safe as long as each charge interacts with a large number of other charges. Then
we can assume the fluctuations ⟨δρ2⟩/⟨ρ2⟩ are small. There are some famous cases where
this mean-field approximation fails spectacularly.

3 Charged interfaces

3.1 Gouy-Chapman Theory

Consider a planar charged surface immersed in an electrolyte solution. In an inhomogeneous
potential the concentration of a mobile charged species i obeys

Ci = C0
i exp

(
−zieΦ

kBT

)
, (3)
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where zi is the valence, e is the electron charge, and Φ is the local potential. The region of
inhomogeneous potential is assumed to be connected to a vast reservoir of particles at zero
potential and with concentration C0

i . It is almost always the case that the enhancement or
depletion of ions near an interface leaves the bulk concentration essentially unchanged.

The excess charge density is

ρ =
∑
i

Cizie. (4)

The potential in turn depends on the excess charge density via Poisson’s equation. For the
planar geometry we are considering here, this becomes

d2Φ

dx2
= − 1

ϵϵ0
ρ(x). (5)

Together Eqs. 3–5 form the coupled Poisson-Boltzmann equation, a nonlinear differential
equation:

d2Φ

dx2
= − 1

ϵϵ0

∑
i

C0
i zie exp

(
−zieΦ

kBT

)
. (6)

Before we get into the complete solution, let’s consider the limiting case where the exponential
term is small, i.e. the potential is ≪ 26 mV/z (a frequently violated condition). Then we
can linearize the exponent, and we get the equation:

d2Φ

dx2
= − e

ϵϵ0

∑
i

C0
i zi

(
1− −zieΦ

kBT

)
. (7)

The first term on the r.h.s. disappears because
∑

i C
0
i zi = 0 by electroneutrality of the bulk

solution. The Φ dependent part of the r.h.s. gives us the equation

d2Φ

dx2
= Φ

1

ϵϵ0kBT

∑
i

C0
i z

2
i e

2. (8)

The solutions to this equation have the form

Φ(x) = Aex/λD +Be−x/λD , (9)

where the Debye length is:

λD =

(
ϵϵ0kBT∑
i C

0
i z

2
i e

2

)1/2

. (10)

For the special case of a 1:1 electrolyte, the Debye length is:

λD =

(
ϵϵ0kBT

2C0z2e2

)1/2

. (11)

Table 3.1 gives the Debye lengths (sometimes called the “Double layer” thickness) for various
concentrations of monovalent 1:1 electrolytes.

Where does the Debye length come from? Well, there are two fundamental length scales
in an ionic solution: the mean spacing between ions (determined by the concentration), and
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C0 (Molar) λD (nm)
1 0.3
10−1 0.96
10−2 3.0
10−3 9.6
10−4 30
10−7 960

Table 1: Double layer thicknesses for various concentrations of a 1:1 monovalent electrolyte.
The last line corresponds to the case of deionized water, for which [H+] = [OH−] = 10−7 M.

the Bjerrum length, lB, which is the distance at which the interaction energy of two unit
charges equals kBT :

lB =
e2

4πϵϵ0kBT
. (12)

For unit charges in water at room temperature, the Bjerrum length is 0.7 nm.
The Debye length is an amalgamation of these two lengths. Ignoring the numerical factor,

which is just a convention, we have:

λD =

(
1

4π
∑

i C
0
i lB,i

)1/2

. (13)

You can check the units to see that this works.
For a charged planar interface exposed to a semi-infinite solution in the positive x̂ direc-

tion, clearly only the decaying exponential is physical: Φ(x) = Ae−x/λD . Now we need to
find the prefactor A. To do this, we will use the fact that the electric field (dΦ/dx) far from
the interface vanishes. If it didn’t vanish in the bulk, there would be a net electric current,
which would flow until the electric field did vanish. This implies that if the bound surface
charge density is σ, the total charge held in the double layer must −σ.

Recall from electrostatics that if you have an isolated surface with charge density σ, the
electric field on either side of the surface is:

E =
σ

2ϵϵ0
n̂, (14)

where n̂ is the unit-normal to the surface. This formula is a consequence of Gauss’ law. Now
we have surface charge σ on our solid, and −σ in the solution, so the total electric field at
the surface of the solid is:

Etot =
σ

ϵϵ0
n̂. (15)

This electric field is just dΦ
dx
|x=0. Plugging in our result from the solution to the linearized

P-B equation we get:
A

λD

=
σ

ϵϵ0
, (16)

or

Φ(x) =
λDσ

ϵϵ0
e−x/λD . (17)
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The bulk charge density at the interface is:

ρ(x = 0) = −ϵϵ0
d2Φ

dx2
|x=0

=
−σ

λD

. (18)

This result makes sense: the screening charge is proportional to the fixed charge σ, spread
over sheet of thickness λD.

Let’s now calculate the concentrations of the two ions at the interface for the case of a
simple 1:1 electrolyte. In the linearized limit, the deviations in concentration of the two ions
are equal and opposite. Say C+ = C0 +∆C and C− = C0 −∆C. Then the charge density
is just ρ = 2ze∆C, or

∆C =
−σ

2λDze
. (19)

The solution to the full nonlinear P-B equation is given by the Gouy-Chapman formula:

tanh(zeΦ/4kBT )

tanh(zeΦ0/4kBT )
= e−x/λD , (20)

where Φ0 is the potential on the surface.
The Gouy-Chapman formula is an implicit solution for the potential. To get the exact

potential we need to solve numerically.
For potentials where the nonlinear term in the P-B equation is significant, the Gouy-

Chapman theory breaks down anyway because it does not take into account the finite size
of the ions. In the Gouy-Chapman theory, ions may approach infinitesimally close to the
surface, leading to a divergence in the screening charge at large surface potentials. The Stern
theory remedies this defect by setting a finite distance of minimum approach, but we don’t
need to go into it here.

For a colloidal particle, the above analysis applies provided that the radius a ≫ λD.
Then one can think of the surface as essentially planar. Table 3.1 shows that this condition
applies in standard buffers for objects larger than a few nanometers in diameter.

3.2 Charge renormalization

The effects of any charge are exponentially screened over a distance of order the Debye length
in solution. So electrostatics in solution looks nothing like electrostatics in vacuum, where
interactions fall off as 1/r. The potential around a point charge can be shown to fall off as:

Φ(r) ∼ e−r/λD

r
. (21)

This potential is called a Yukawa potential and has the same functional form as the strong
nuclear force that holds the protons and neutrons together in the nucleus. We all know that
the electrostatic interaction is mediated by photons, which are massless. In the case of the
strong nuclear force, the potential is mediated by pions, which have a mass, and therefore
can only propagate a finite distance before they decay. The exponential decay of pions as
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they propagate is the cause of the exponentially decaying Yukawa potential in the strong
nuclear force.

Anyway, we find that far from a charged surface, the potential decays exponentially with
a decay constant λD, as

Φ(x) = Φ0
effe

−x/λD . (22)

Here Φ0
eff is the “effective” surface potential which is not equal to the true surface potential,

due to the accumulation of ions near the surface. This effect is called “charge renormaliza-
tion” and also happens in quantum electrodynamics. Due to charge renormalization, highly
charged surfaces don’t lead to potentials that are very different from weakly charged surfaces,
except very near the surface.

4 Ion-mediated forces

Consider two parallel planar surfaces with equal surface charge σ. In the absence of mobile
ions, what’s the electric field in the gap? It’s zero! Consider the symmetry of the problem
to convince yourself of this.

This means that the potential in the gap is initially constant, so counterions will accu-
mulate in the gap. These ions repel each other, so they tend to accumulate near the charged
interfaces (just the way charged particles accumulate near the surface of a conductor). You
might be tempted to think that the counterions accumulate near the surface because of their
attraction for the surface, but that would be wrong.

Do the two surfaces attract or repel each other? This is a subtle issue. Energetically, you
might think that the counterions want to be closer to the surfaces. If you squeeze the surfaces
together, the counterions are confined closer to the surfaces, so the electrostatic energy would
be lower. But this is wrong! We just said that the surfaced contribute nothing to the electric
field in the gap. So every counterion is pulled on equally by both surfaces. On the other
hand, by squeezing the surfaces together you’ve increased the concentration of counterions
(remember the total number must remain constant and is set by the surface charge density),
so the osmotic pressure goes up. You get a net repulsive force for like-charged surfaces.

We’ll use a trick to calculate the pressure between the walls. If this pressure were any-
where inhomogeneous, there would be a flow of solution from the region of higher pressure
to the region of lower pressure. So we know the pressure is constant across the gap. We’ll
calculate the pressure at the midpoint, since that is the easiest. This pressure is due to
the osmotic pressure of the counterions. So if we can find their concentration, we can find
their osmotic pressure. Actually, we want the excess osmotic pressure above that of the bulk
solution. This excess pressure is:

P = kBT

[∑
i

Ci −
∑
i

C0
i

]
. (23)

If we assume a symmetric 1:1 electrolyte, then each sum has two terms, one for cations and
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one for anions. Let’s regroup the terms to have the cations together and the anions together:

P = kBTC
0[(e−eΦ/kBT − 1) + (e+eΦ/kBT − 1)

≈ e2Φ2C0

kBT
. (24)

To get the second line we took a second order Taylor expansion assuming that the potential
at the midpoint between the plates was small compared to kBT . Since we only went to first
order in eΦ0/kBT in the linearized P-B problem, does Eq. 24 require deviating from the
linearized P-B solution? Possibly, depending on how big an approximation the linearized
P-B equations make.

Another reasonable approximation is that this potential is the sum of the potentials due
to each of the plates in isolation. Using the full nonlinear P-B equations, this assumption
yields

Φ(h/2) ≈ 8kBTγ

e
e−h/(2λD), (25)

where

γ = tanh

[
zeΦsurf

4kBT

]
. (26)

The pressure is then:
P = 64kBTC

0γ2e−h/λD . (27)

For low surface potential, this simplifies further to:

P ≈ 2σ2

ϵϵ0
e−h/λD , (28)

which is indeed what we would have gotten from the linearized P-B solution. Note that the
surface pressure between two charged plates in vacuum is

Pvac =
2σ2

ϵϵ0
, (29)

so the Debye screening decreases the pressure proportional to the amount of screening be-
tween the plates, as one might expect.

For spheres of radius R, a similar calculation shows that the force is

F ≈ 2πRλDσ
2

ϵϵ0
e−h/λD . (30)

Comparing the two expressions above, we see that the effective “contact area” over which
the pressure is applied to the sphere is the product of the radius and the Debye length.
This should remind you of the example we considered earlier of depletion forces, where the
excluded particles yielded an attractive force given by the product of the osmotic pressure,
the radius of the sphere, and the size of the small particles.
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5 DLVO theory

DLVO stands for: Derjaguin, Landau, Verwey, and Overbeek, four clever fellows who came
up with this theory in 1948 (the same year as the Casimir Polder result–after WWII all
these people who had been working on weapons or hiding during the war started to think
about interesting problems again. There was a huge burst of creative activity immediately
following the war.).

Let’s now talk qualitatively about the interaction of colloidal particles in water. The
dominant forces are usually electrostatics and van der Waals. The electrostatics we just
discussed. Let’s assume that the separation between the spheres, h is much less than their
radii, R. Let’s further assume that the Debye length is much less than the radii too. Then
the non-retarded van der Waals potential is approximately:

Uvdw = −AR

12h
, (31)

where A is an empirical constant called the Hamaker constant. The total potential is the
sum of the van der Waals term and what you get from integrating the double-layer force, to
wit:

U = −AR

12h
+

2πRλ2
Dσ

2

ϵϵ0
e−h/λD . (32)

[DRAW EXAMPLES OF DLVO POTENTIAL]
This potential can have various shapes depending on the relative strengths of the van

der Waals and electrostatic contributions. At low salt, electrostatics dominates, so the
potential has a long-range repulsion and a short-range attraction. Under such conditions
colloidal particle are usually stable in solution–they would like to aggregate, but the rates
of aggregation are imperceptibly slow. At intermediate salt concentrations, the potential
develops a local minimum at intermediate radii. That is, particles can become bound,
but not aggregated. Lowering the salt again will cause the particles to re-separate. This
process is called flocculation. At high salt, the dispersion becomes unstable and the particles
irreversibly aggregate. This is called coagulation.

There is a critical concentration of ions at which coagulation occurs, creatively called the
“critical coagulation concentration” or ccc. The ccc occurs when the potential maximum
crosses zero, i.e. when U(h) = 0 and dU/dh = 0. You can show that this concentration
depends on the valence of the charges to the sixth power:

ccc ∝ 1/z6. (33)

This is an amazing result. Particles with valence 2 are 64 times as good at coagulation as
are particles of valence 1. Particles of valence 3 are 729 times as good!

While this result is reasonably consistent with experiment, our whole approach runs into
trouble when we deal with polyvalent ions. The problem is that our initial assumption, that
we can neglect fluctuations, breaks down. Ion-correlation effects can lead to very odd effects,
such as the attraction of like-charged bodies in solution (think of the classical analog of the
van der Waals force), and may play an important role in the stability of RNA and protein
structures. This is a topic of much current research and is something that is very interesting
and subtle.
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5.1 Applications of DLVO

One application of this is in the condensation of DNA. The molecule spermine has 4 amines
that can be protonated at physiological pH (it probably has a charge of +3 or +4). This
makes it an extremely effective condensing agent. As its name suggests, it is in high con-
centration in sperm, where a lot of DNA needs to be packed into a small compartment.
Other polyvalent cations, such as Cobalt and Ruthenium complexes are also very good at
condensing DNA.

Coagulation is a very important process. For instance, when you have a river run into
the ocean, you get a mixing of the fresh water from the river with the salt water from the
ocean. Rivers typically carry a huge amount of silt and dirt in the form of colloidal particles.
When these particles encounter salt water, all of a sudden they aggregate and become heavy
enough to fall out of solution. This leads to deposits of mud where the river reaches the
ocean. This mud then blocks the path of the river, so the river fans out into the characteristic
delta pattern.

Another example of application of the DLVO theory is in the making of cheese and
yogurt. Of course this is a very complicated process, and the details depend on whether
you are making yogurt, or any of the hundreds of different kinds of cheeses. But the main
idea is that bacteria ferment the sugar lactose into lactic acid. The acid lowers the pH and
neutralizes the negative surface charge on casein and fat globules. Once these globules have
lost their protective electrostatic repulsion they aggregate into a solid.

I hope you can see from the discussion of today and the previous two classes that the
forces between bodies in solution can be wonderfully subtle and complex. If you include van
der Waals, electrostatic, and depletion forces, it is possible to have effective pair-potentials
with several maxima and minima. As you tune the system parameters by changing pH,
ionic strength, temperature, surfactants, you can cause particles to transition between many
qualitatively different regimes.
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