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1 Review from last class

Last class we discussed the Central Limit Theorem.
The central limit theorem states that if you take N steps from a random

distribution with mean µ and variance σ2, then the distribution after N steps
is a Gaussian:

P (x) =
1√

2πNσ2
exp

[
− (x−Nµ)2

2Nσ2

]
. (1)

The average displacement is:
⟨x⟩ = Nµ, (2)

and the variance in x is:
⟨∆x2⟩ = Nσ2. (3)

We applied this formula to the motions of a diffusing particle.

2 Introduction

There are three pillars of statistical mechanical thinking. One is the central
limit theorem. We already discussed that. Two is the equipartition theorem.
It’s in the appendix of the lecture notes. And three is the fluctuation-dissipation
theorem, a special case of which called the Stokes Einstein relation we’ll discuss
today. After that we’ll be thoroughly equipped to tackle a wide variety of
interesting and subtle problems.

3 Stokes Einstein Relation

The Equipartition theorem describes the energetics of particles subject to an
external force. Now let’s talk about the dynamics. We will see that the diffusion
coefficient, which we’ve taken as a given parameter, is actually simply related
to other things we know.

Let’s assume that the force is a gradient of a potential. That is:

F = −∇U. (4)
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The force imparts a velocity to the particles given by

v =
1

γ
F, (5)

where γ is the drag coefficient. The total flux of particles is:

j = cv

= − c

γ
∇U. (6)

We’ve been ignoring the fact that the particle can diffuse too. There’s no
cross-talk between force-induced drift and diffusion. These two terms simply
add together to make the total flux:

j = −D∇c− c

γ
∇U. (7)

The rate of change of concentration is still given by the negative divergence of
the flux:

∂c

∂t
= D∇2c+∇ · ( c

γ
∇U). (8)

This is called the Smoluchowski Equation, which is a special case of the Fokker
Planck Equation.

[SHOWEXAMPLES OF PARTICLESMOVING UNDER ELECTRIC FIELDS,
AND BAND BROADENING IN ELECTROPHORESIS]

It’s important to distinguish two different forms of steady state that are
often confused with each other. The term “Steady State” refers to the condition
∂c/∂t = 0, i.e. that the concentrations everywhere are not changing with time.
If you have sources and sinks, you can still have a flux, even in a steady state.
A more restrictive condition is what we call “thermal equilibrium”. Thermal
equilibrium must satisfy the condition of detailed balance, i.e. that the net flux
between any two micro-states is exactly zero. If you have some flux from A
to B, you must have equal and opposite flux from B to A. You can’t achieve
steady state of B by siphoning off particles to some third state C. The Venn
diagram is that all thermal equilibria are steady states, but not all steady states
are thermal equilibria.

Now we’re about to discover something amazing and unexpected. Suppose
we’re at equilibrium (not just steady state, but equilibrium, which means j = 0).
Then we know the distribution of concentration must be independent of time
and obey:

c(r) = c0 exp[−U(r)/kBT ]. (9)

We can plug this equation into the one for j to get:

0 = Dc0
∇U

kBT
exp[−U(r)/kBT ]−

1

γ
c0 exp[−U(r)/kBT ]∇U. (10)

Now we cancel almost everything, and are left with:

D = kBT/γ. (11)
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This equation is hugely important. Memorize it. It’s called the Stokes-Einstein
formula, after its discoverers. The Stokes-Einstein formula is a special case of
something called the Fluctuation-Dissipation theorem, which we’ll get to in a
minute.

But first let’s talk about what the Stokes-Einstein formula tells us. On the
one hand, it says that the diffusion coefficient is proportional to kBT . That’s
not so surprising, because we surmised that diffusion was due to thermal motion
of molecules. More surprising, perhaps, is that D is inversely proportional to the
drag coefficient of the particle in the solution. This is a macroscopic property of
the particle, calculable from its geometry and a knowledge of hydrodynamics.
For instance, I’ll state without proof that the drag coefficient of a solid sphere
in water is:

γ = 6πηa, (12)

where η is the viscosity of the solution and a is the radius of the sphere. So for
a sphere we have:

D =
kBT

6πηa
. (13)

This equation tells us that smaller things diffuse faster, and that increasing
the viscosity of a solution can slow down diffusion. In general, the diffusion
coefficient of any object scales inversely with its size. So if you have some
complicated shaped object and you want to know its diffusion coefficient in
water, you can always build a scale model out of wood or something, measure
its drag in honey, and then scale your result to the radius of the real particle
and the viscosity of water.

By the way, the viscosity of pure water at 20 ◦C is: 1.0020× 10−3 Pa·s.
There’s another important consequence of the Stokes-Einstein formula. Up

until the time of Einstein’s 1905 paper on diffusion, nobody knew the value
of Avogadro’s number. Everywhere in classical thermodynamics, Avogadro’s
number always appears in the combination R = NAkB . People didn’t know the
magnitude of Boltzmann’s constant either. If you take a particle of known size
in a solution of known viscosity, and you track its motion, you can calculate D.
Then the only unknown in the Stokes-Einstein equation is kB . You solve for
kB , and then you get NA for free. This is a really nice example of how you can
learn more about a system by watching its spontaneous fluctuations than you
can learn from just its average behavior.

4 Applications of Stokes Einstein

So far we’ve mostly been talking about translational diffusion, that is things
moving from one place to another. Now we’ll talk about some other forms of
diffusion.
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4.1 Fluorescence depolarization

When a small object is placed in solution, not only does it jiggle, but it also
tumbles head over heels. Let’s make an estimate of how long this tumbling
takes. The rotational drag coefficient of a sphere of radius r is:

γr = 8πηr3. (14)

That is, if you are spinning the sphere at angular velocity ω, then the torque is:

T = γrω. (15)

Note that this has different units from the translational drag on a sphere. A
simple way to think about this is that Torque ∼ Force×Distance, and ω = v/r,
where v is the velocity at the surface. This is where you get two extra factors of
r in the denominator. The only thing this simple argument misses is the factor
of 8 for rotation, compared to 6 for translation. To get this factor you’d have
to do the hydrodynamics. We can use the formula for the rotational drag on a
sphere to get the rotational diffusion coefficient, by exactly the same argument
that led to the Stokes Einstein formula:

Dr =
kBT

8πηr3
. (16)

This rotational diffusion coefficient has units of s−1. For small rotations, θ, the
mean square angle through which a diffusing particle rotates is:

⟨∆θ2⟩ = 4Drt. (17)

Can you say why there is a 4 in front, rather than a 2?
One often works with the inverse of this quantity, tr ≡ 1/Dr, called the

rotational correlation time. The rotational correlation time has an interesting
property: tr ∝ r3, so for a series of objects of constant density, tr ∝ M , where
M is the mass of the object. Most proteins have roughly the same density,
ρ ≈ 1.3g/cm

3
(remember, steak sinks). So the rotational correlation time of a

protein is roughly proportional to its molecular weight. What’s the constant of
proportionality? Well, it works out that if we measure the molecular weight in
Daltons, and the rotational correlation time in picoseconds, then the constant
is 1. So a molecule with a molecular weight of 1000 Daltons has a rotational
correlation time of ∼ 1 nanosecond.

The correspondence between molecular weight and rotational correlation
time is the basis of the technique of fluorescence depolarization analysis for
determining the weight of a protein or a protein complex. The idea is that you
attach a fluorophore to the protein, and excite the fluorophore with linearly
polarized light. The fluorophore gets excited, and then re-emits the photon a
short while later. If the excited state lifetime of the fluorophore is long compared
to the rotational diffusion time, then the polarization of the emitted photon is
uncorrelated with the polarization of the incident photon. On the other hand, if
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the excited state lifetime is short, then the two polarizations are correlated. By
measuring the polarization of the emitted photons, you can get a pretty good
estimate of the molecular weight of the protein. You can choose fluorophores
with convenient lifetimes (typically ranging from a few ns to microseconds),
and can adjust the viscosity of the solvent to accommodate proteins with a
wide range of molecular weights. If fluorescence depolarization is performed in
a microscope setup, one can image the distribution of micro-scale viscosity.

4.2 First passage problems

One often wishes to calculate the rate of some diffusion-limited process, e.g. a
bimolecular reaction; or a molecule diffusing out of a spine head into a parent
dendrite; or glucose being consumed by a bacterial colony. There is a nice trick
for doing this. You arbitrarily select a molecule, and imagine following it until
it reacts. The moment it reacts, you introduce another molecule, and so on.
This process will set up a nonequilibrium steady-state concentration profile,
with an absorbing boundary condition on the reacting surface. You can then
calculate the rate of the reaction by looking at the gradient in concentration at
the surface.

As a simple example, consider a 1-D problem with a reflecting boundary at
x = 0 and an absorbing boundary at x = x0. We release particles at x = 0 and
we want to calculate the mean time for a particle to be absorbed at x0. Every
time the particle reacts at x0, we release a new particle at x = 0. So there
is always precisely one particle in the system. I propose that the steady-state
concentration profile is given by a straight line of height 2/x0 at x = 0 and 0 at
x = x0. Let’s check:

1. ∂2p
∂x2 = 0, so this is a steady-state solution (∂p∂t = 0).

2. p(x0) = 0, satisfying the boundary condition at x = x0

3.
∫
p(x)dx = 1, so the probability is normalized

The flux at the absorbing boundary (actually, everywhere!) is j(x0) = −D dp
dx =

2D/x2
0. The units of flux are ‘particles per second’, so to find the mean time

per particle, we just take 1/j, and get t0 = x2
0/2D. You’ll test this prediction

numerically on the homework.
Whereas the linear concentration profile might not be intuitive, similar re-

sults in other domains might be more familiar. In heat-flow, if you have a 1-D
material that is heated at one end and cooled at the other, you get a linear
temperature profile inside. If you have a 1-D region of space where one end is
held at one potential and the other at a different potential, then the voltage
between follows a line profile (e.g. in a parallel plate capacitor).

4.3 Diffusion-limited reaction rates

Another interesting application of the theory of diffusion is to the question of
how quickly two particles in a solution can find each other, if they rely on
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diffusion alone. This sets an upper speed limit on many biological processes.
Consider two particles with diffusion coefficients DA and DB , and radii rA and
rB . The 1-d distance between them varies with a diffusion coefficient given by
DA +DB (you might prove this on the next homework). Suppose that each of
these species has some concentration in the solution, given by [A] and [B], and
that if two of these ever bump into each other, they react. What’s the reaction
rate?

We go into the frame of reference of one of the A molecules. We imagine that
this is an absorbing boundary, and we calculate the steady-state concentration
profile of the other reactant around it. Then the flux of B molecules to it is, as
with the bacterium eating oxygen in a pond,

dnB

dt
= −4π(DA +DB)(rA + rB)[B]. (18)

This is gives the rate of disappearance of B due to one molecule of A. The
total number of molecules of A is nA = [A] × V , where V is the volume of the
container, so we multiply the right hand side by [A] × V to get the number of
B disappearing per second. Then we divide by V to get the rate of change of
concentration of B:

d[B]

dt
= −4π(DA +DB)(rA + rB)[A][B]. (19)

But something interesting happens if we plug in the Stokes Einstein relation for
DA and DB :

d[B]

dt
= −4kBT

6η
(
1

rA
+

1

rB
)(rA + rB)[A][B]

= −2kBT

3η

(rA + rB)
2

rArB
[A][B]. (20)

Note that for aggregation of spheres of the same size (e.g. oligomerization), the
diffusion limited rate is independent of the particle size!

d[B]

dt
= −8kBT

3η
[A][B]. (21)

Larger spheres diffuse more slowly, but they have a larger capture radius. Of
course, if you want to keep the concentration of spheres constant, while increas-
ing their radius, the volume fraction of the spheres will go up too. This shows
the surprising fact that for like-sized particles, the diffusion-limited reaction rate
constant is independent of particle radius R.

For water, the diffusion-limited reaction speed limit is:

kmax ≈ 7× 109s−1Molar−1. (22)

Let’s review the relation between reaction rates and steady state concentra-
tion profiles: The rate per molecule of A of B reacting with A is given by the
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steady state solution to the diffusion equation, with A as an absorbing bound-
ary. The argument was that the rate per molecule if you follow an individual
molecule should be the same as the ensemble average rate. This is subtle, so
think about it for a while. The key point is that even when an absorbing species
has depleted the local concentration, the remaining molecules are still totally
unbiased in their random walks.

A Appendix: Equipartition Theorem

The equipartition theorem states that for any degree of freedom where the
energy depends quadratically on the coordinate, at thermal equilibrium the
mean energy is 1

2kBT .
Here’s the proof. The energy is:

U(q) =
1

2
kq2, (23)

where k is some constant, and q is the coordinate of the particle. We all know
that the probability of a particle occupying a state with energy U(q) is:

P (q) ∝ exp[−U(q)/kBT ], (24)

where the constant of proportionality is whatever it takes to make∫ ∞

−∞
P (U(q))dq = 1. (25)

So for our quadratic degree of freedom we have:

P (q) ∝ exp[− kq2

2kBT
]. (26)

We can get the constant of proportionality by noting that this probability dis-
tribution is a Gaussian. So:

P (q) =

√
k

2πkBT
exp[− kq2

2kBT
]. (27)

Now let’s evaluate the expectation value of the energy. This is given by:

⟨U⟩ =
∫ ∞

−∞

1

2
kq2P (q)dq. (28)

Well, we know that the expectation value ⟨q2⟩ for a Gaussian probability dis-
tribution is just the variance:

⟨q2⟩ = kBT

k
, (29)

from which we see that

⟨U⟩ = 1

2
kBT. (30)

There you have it: the Equipartition Theorem.
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A.1 Applications of equipartition

Let’s talk about some places where this shows up. If you have a Brownian
particle on a spring, its mean potential energy is 1

2kBT in one dimension. In
two dimensions, it has 1

2kBT along each dimension, so the energy is just kBT ,
and in three dimension it’s 3

2kBT . Note that the spring constant dropped out
of the calculation. It doesn’t matter how tightly the particle is bound: it always
has 1

2kBT of potential energy.
The kinetic energy of a particle is KE = 1

2mv2. So in one dimension the
mean kinetic energy is 1

2kBT , and in 2-D it’s kBT , and in 3-D 3
2kBT .

The equipartition theorem has multitudinous important consequences. The
molar specific heat at constant volume of a monatomic ideal gas is:

cv =
∂E

∂T

=
3

2
R. (31)

(recall that R ≡ NAkB). If you have diatomic molecules that can rotate about
two axes perpendicular to the axis of symmetry, then cv = 5

2R. If, furthermore,
the temperature is high enough to excite the internal vibrations along the bond
between the atoms, then you get two more degrees of freedom (a kinetic energy
and a potential energy) and cv = 7

2R. In a free gas the atoms or molecules only
have kinetic energy, no potential energy.

In a solid crystal, each atom has three translational degrees of freedom,
each of which has a kinetic and a potential energy. Total number of quadratic
coordinates: 6. So the molar specific heat should be 3R. In fact, at high
temperatures this is very nearly the case. This is called the law of Dulong
and Petit. At lower temperatures (which for many materials includes room
temperature), the fact that the vibrations are quantized becomes important,
and this analysis breaks down. As a side note, Einstein tried to develop a
quantum theory of the specific heat, but basically got it wrong, and later Debye
got it right.

The Equipartition Theorem is the reason why kBT is used as the universal
energy scale: everything has approximately kBT of energy (ok, actually 1

2kBT
per quadratic degree of freedom).

Of course energy doesn’t always depend quadratically on a coordinate. But
for any system at equilibrium, we can say that the energy is at a local minimum
(if it weren’t, the system would move until it were). This means that ∂U/∂q = 0.
So the first non-zero term in the Taylor series is the quadratic term, to which
we can apply the equipartition theorem.
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