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1 Two-state systems

Today we’re going to talk about two-state systems. Almost any chemical reaction can be
thought of in this way: you have reactants and products; or you have an ion inside the cell or
outside the cell; or you have the nucleotide-bound state or the nucleotide-free state. Indeed
everything we learned about molecular motors can be couched in the language of two-state
systems. Here’s how: If you watch a single molecular motor for some time long compared
to the single step time, you can calculate the mean displacement and the variance. These
quantities are the sums over all steps of the mean displacements and variances for a single
step (central limit theorem!). You could get the same result by starting a large number of
molecular motors all in some initial conformation, and then letting them all run for a short
time t so that no motor takes more than one step. The mean displacement per motor, and
the variance in this displacement, run for some short time t and summed over N motors,
will be the same as for a single motor run for time Nt.

A molecular motor can be thought of as just a chemical reaction where the total amount
of reactants that become products happens to be coupled to the total distance traveled, i.e.
displacement is one of the reaction products, whose free energy depends on the force the
motor is working against.

1.1 Modeling 2-state processes

You want to make a measurement on a system, and from this measurement to infer the rate
constants. You then want to use this rate information to make a microscopic model of the
system you’re studying, namely to learn something about the shape of the potential energy
surface and the motion on this surface. How do you do this?

One approach is to make a single-molecule measurement, for instance observing the
folding and unfolding of a single RNA molecule under tension. Here’s an example:

[SHOW EXAMPLES OF 2-STATE TRAJECTORIES:

� SCIENCE PAPER FROM LIPHARDT AND BUSTAMANTE ON “REVERSIBLE
UNFOLDING OF SINGLE RNA MOLECULES BY MECHANICAL FORCE”;

� FINZI AND GELLES SCIENCE PAPER ON TETHERED BEAD ASSAY;

� SINGLE-MOLECULE FRET EXPERIMENTS;
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� SINGLE ION CHANNEL RECORDINGS: PATAPOUTIAN AND JULIUS NOBEL
PRIZE PAPERS.]

How should we think about these two-state trajectories? label the two states A and B.
We can assign the system a probability to be in either state at any time. The conditional
probability of being in state A at time t, given that you were in state x at time t0 is denoted
p(A, t|x, t0). As a form of shorthand we will write this pA, and similarly for pB. Put these
two probabilities on top of each other to form a vector. This vector evolves subject to the
following equation:

d

dt

(
pA
pB

)
=

(
−λ µ
λ −µ

)(
pA
pB.

)
(1)

Here λ is the rate of going from A to B and µ is the rate of going from B to A. We also
have the constraint that pA+pB = 1. There are various techniques for solving this equation.
The most general is to write

V(t) = eMtV(0), (2)

whereV is the state-vector andM is the transition matrix. The exponential can be evaluated
by diagonalizing M. The nice thing about this approach is that it generalizes to systems
with an arbitrary number of states.

We’ll take a slightly different approach, and consider the time-evolution of the composite
variable X ≡ λpA − µpb. Then the matrix equation simplifies to:

dX

dt
= −(λ+ µ)X, (3)

with the trivial solution X(t) = X(0)e−(λ+µ)t. Solving for pA(t) and pB(t) yields:

pA(t) =
µ

λ+ µ
+ exp [−(λ+ µ)t]

(
pA(0)−

µ

λ+ µ

)
pB(t) =

λ

λ+ µ
+ exp [−(λ+ µ)t]

(
pB(0)−

λ

λ+ µ

)
. (4)

At steady state the exponentials decay and the equilibrium populations in A and B are:

pA =
µ

λ+ µ

pB =
λ

λ+ µ
. (5)

We see that the composite variable X is a measure of the deviation of the concentration
from equilibrium.

In a real system, there are spontaneous fluctuations in the concentration because each
molecule decides whether to react independently of all its neighbors. These spontaneous
fluctuations relax as would fluctuations you put in by hand. In fact, you can write a Langevin
equation for the concentration fluctuations, just as you would for the motion of a particle in
a harmonic potential well:

dX

dt
= −(λ+ µ)X + ξ(t), (6)
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where ξ(t) is a generalized force, satisfying:

⟨ξ⟩ = 0 (7)

⟨ξ(t)ξ(t+ τ)⟩ = 2(µ+ λ)⟨X2⟩δ(τ). (8)

Solving this equation, just as we did for the case of a particle in a harmonic well gives:

⟨X(t)X(t+ τ)⟩ = ⟨X2⟩ exp [−(λ+ µ)τ ] . (9)

Thus the FDT rears its head again. In fact, the parallel between the chemical reaction
system and the particle in a well is more apparent if you think about it from a thermody-
namic perspective. The chemical potential of a species depends on its concentration. Near
equilibrium, the free energy of each species depends quadratically on the deviation of its
concentration from equilibrium. So we really do have an overdamped harmonic oscillator,
just in an abstract chemical space.

How big are the fluctuations in concentration? This problem is mathematically the same
as when we considered fluorescent molecules which had some probability p to be in a laser
beam, and q = (1 − p) not to be in the laser beam. The statistics are governed by the
binomial distribution. In our case p = λ/(λ + µ) and q = µ/(λ + µ). For n molecules, the
variance is just σ2 = npq, or in our case:

σ2
A = σ2

B = n
µλ

(µ+ λ)2
. (10)

So now we have 3 ways to measure the kinetics: we could do a single-molecule experiment
and calculate p(A, t|x, t0), and p(B, t|x, t0); we could disturb the system from equilibrium
and watch its macroscopic relaxation, or we could look at the spontaneous fluctuations about
equilibrium. All of these approaches yield the combined rate constant µ + λ. Is there any
experiment we could do to extract µ and λ separately?

Yes!! If we do the single-molecule experiment and look at the dwell-time histograms, we
will see that dwell times are exponentially distributed, with decay constants λ for state A
and µ for state B.

2 Effects of mechanical forces on rates and equilibria

So far we have been considering the motion of unperturbed biochemical systems. But these
days many experiments involve pulling or pushing on a molecule, or otherwise interfering
with its progress. Why do we do this, and how can we use it to learn about the nature of a
biochemical step?

One of the most interesting aspects of biophysics is the strong coupling between mechanics
and chemistry. Remember on the first day the video I showed of the developing C. elegans
embryo, where the contraction of the actomyosin network determined the location of the head
and the tail? Well throughout embryonic development much of the information that helps
cells determine what to become and where to go is mechanical. Cells have a great many
mechanisms for transducing mechanical signals into chemical ones. People keep learning
about new ways in which cells sense the mechanical nature of their environment and react
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accordingly. A trivial example of this is when you go to the gym and work out–the mechanical
stresses on your muscles ultimately lead to biochemical cues to develop more muscle.

All of our senses can also be thought of as mechano-chemical transduction events. Touch
is an obvious one, but hearing and temperature sensation fall in this category too. Vision is
an opto-chemical process, but much of the same formalism applies. And taste and smell can
be thought of as forms of sensing chemical potentials rather than mechanical potentials. For
all of these reasons it is interesting to understand the general methods by which external
forces may affect the balance in a chemical reaction.

When you were a small child, you probably learned about Le Chatelier’s principle: that
in a chemical reaction, if you create moles of gas, then an increase in pressure can favor
the reactants. Creating moles of a gas is a way for a chemical reaction to do mechanical
PdV work. So this is an example of a mechano-chemical coupling. Let’s review where this
principle came from, so we can see how to generalize it to other types of mechano-chemical
couplings.

If you have a chemical reaction aA+ bB ⇀↽ cC + dD then the equilibrium constant is:

Keq =
[C]c[D]d

[A]a[B]b
. (11)

If everything is in the gas phase, then you replace [A], [B], [C], [D] by the respective partial
pressures. Now suppose you increase the total pressure, at constant temperature, by some
amount x. Then the numerator is scaled by a factor of xc+d, while the denominator is scaled
by xa+b. If c+d > a+b, then the only way to maintain the condition of chemical equilibrium
is to shift the reaction toward the reactant side.

Ok, but where did the expression for the equilibrium constant come from? Why do the
concentrations and stoichiometric coefficients appear in this odd way? This is a consequence
of the Second Law of thermodynamics. The Second Law states that for any spontaneous
process, the entropy of the Universe must increase. The entropy of the Universe comprises
the entropy of our system, and the entropy of everything else (the “bath”). If we do a
chemical process at constant volume and temperature, then the change of entropy of our
system is just ∆S. The change in entropy of the bath is ∆Sbath = qbathrev /T , where qbathrev is
the heat transferred to the bath. But we have qbathrev = −qsystemrev = −∆Hrxn, where ∆Hrxn

is the enthalpy change of the reaction (for a reaction at constant volume ∆Hrxn = ∆Urxn,
but if the reaction does PdV work, then we need to account for this work for the relation
qsystemrev = ∆Hrxn to still hold).

So now we can express the seemingly too-deep-to-be-useful relation ∆SUniverse > 0 in
terms of system parameters only:

∆Srxn −∆Hrxn/T > 0 (12)

or equivalently
∆Grxn < 0 (13)

for a spontaneous process, where ∆G ≡ ∆H − T∆S. At thermal equilibrium, where
∆SUniverse = 0, we have ∆G = 0.

Now how does ∆G for a reaction change with concentrations or partial pressures? The
∆H term is all about the actual chemical reaction: the energies of the bonds broken or
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formed. The effect of concentration is all in the entropy terms. Entropy is defined as
S ≡ kB lnΩ where Ω is the number of microstates. For a gas, the number of microstates
should be proportional to the accessible volume, so we have S = S0 + NkB lnV , where N
is the number of molecules (replace NkB by nR, where n is the number of moles, if you
wish). The quantity S0 contains all the entropy in internal molecular degrees of freedom
(vibrations, rotations, etc.), as well as the entropy associated with the kinetic energy of the
particles. For an ideal gas, V ∝ 1/P , so for a reaction that changes the pressure of a gas,
we have ∆S = −NkB lnPf/Pi. When we measure entropy relative to some standard state
(1 Atm pressure, typically), it is customary to drop the Pi in the denominator, which is
understood to be 1 Atm. Then we have ∆S = −NkB lnP .

So for a reaction under non-standard conditions (concentrations and partial pressures
deviating from 1 molar and 1 Atm, respectively), then we have:

∆G = ∆G0 +RT lnQ (14)

where Q is calculated by gathering all the logarithmic terms and putting the stoichiometric
coefficients in the exponents. For our notional reaction above, this is:

Q =
[C]c[D]d

[A]a[B]b
. (15)

The statement ∆G = 0 then implies that:

[C]c[D]d

[A]a[B]b
= e−

∆G0

RT . (16)

We call the term e−
∆G0

RT the equilibrium constant, Keq. This is a really remarkable result,
because we’ve found a relation between the concentrations and partial pressures for some
arbitrary reaction conditions to the concentrations and partial pressures under a set of stan-
dard “reference” conditions.

The beauty of working with ∆G is that it seamlessly combines chemical, mechanical, and
electrical contributions to the energy. For a reaction at constant pressure we have:

∆G = ∆U0 − T∆S0 +RT lnQ+ P∆V ol + σ∆A+ F∆x+ τ∆θ + V∆q + ... (17)

The terms P∆V ol, σ∆A, and F∆x represent mechanical work in 3, 2, and 1 dimensions,
respectively. The term τ∆θ represents rotational work, and the term V∆q represents the
electrical work (moving a charge ∆q through a potential drop V ).

Explicitly, you can now see how all these different forces affect equilibrium constants:

Keq = K(0)
eq exp [−(σ∆A+ F∆x+ τ∆θ + V∆q + ...)/kBT ] . (18)

When you were a kid you learned about “Le Chatelier’s” principle for pressure, but now
you see it applies for all the other kinds of work that can couple to a chemical system.
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2.1 Example: Nernst potential

Here’s a simple example. Consider an ion translocating across a membrane. The sign
convention for membrane voltage is to measure ∆V = Vin − Vout. Since there is no chemical
transformation, we have ∆G0 = 0. If we consider an ion flowing from outside the cell to
inside the cell, the reaction quotient is Q = [Cin]

[Cout]
. We then have

∆G = RT lnQ+ V∆q (19)

where V is the membrane potential. Setting ∆G = 0 and solving for V gives:

V =
RT

∆q
ln

(
[Cout]

[Cin]

)
. (20)

This is the famous Nernst equation. The parameter RT/F has the numerical value of 26 mV
at room temperature, where the Faraday constant, F , is the number of Coulombs in a mole.
When logarithms are taken base 10, then the prefactor gets multiplied by ln 10 = 2.303 and
becomes 59 mV. The denominator, ∆q is the charge on a mole of ions, which is ZF , where
Z is the valence of the ion and F is Faraday’s constant. If you wish, you can replace the
prefactor by kBT/Ze where e is the charge of a proton.

2.2 Example: opening of voltage-gated ion channels

There are some ion channels which have a “voltage gate” as part of the molecular structure.
This is a transmembrane helix with some charges associated with it, typically a few arginines.
Many ion channels act as tetramers, in which case the charge is the sum of the charges of
all the gates (assuming that the gates act in unison). In the presence of a transmembrane
electric field, these charges can move, opening up an ion-conducting pore in the channel.
If the channel opens at positive membrane voltages, then the probability of the channel
being open depends on the membrane voltage, as follows. [MAKE DRAWING OF TWO
STATES, LOWER STATE OF ENERGY ZERO (CLOSED STATE) AND OPEN STATE
AT ENERGY V0. AN INCREASE IN V LOWERS THE ENERGY OF THE OPEN STATE
RELATIVE TO THE CLOSED STATE.]

Popen =
eq(V−V1/2)/kBT

1 + eq(V−V1/2)/kBT

=
1

1 + eq(V1/2−V )/kBT
(21)

Here V1/2 is the voltage where the channel has a 50% probability of being open. If the
conductance of a single open ion channel is g1 and your patch pipette has n channels in it,
then

gn = ng1Popen. (22)

[SKETCH gn vs V for a NaV channel]. Example: voltage-gated Na and K channels have a
probability of being open that increases e-fold per 4 mV, implying 6 charges move concertedly
across the membrane (kBT/q = 6 meV).

6



There will also be fluctuations in the number of open channels, because each channel will
gate independently from the others. These fluctuations will have magnitude

σ2
n = ng21Popen(1− Popen). (23)

[SKETCH gn and σ2
n vs V]

If you find the voltage where the channel is open half the time, then the product Popen(1−
Popen) = 1/4 and the fluctuations are maximized. The ratio of the fluctuations to the mean
gives the unit conductance!

σ2
n

gn
=

1

2
g1. (24)

The number of channels in the pipette is

n =
(gn)

2

σ2
n

(25)

measured at the 50% activation point. People used fluctuation measurements like this to
learn about the unit conductance of ion channels long before people invented techniques
sensitive enough to record from a single channel. This estimate we just did is exactly the
same as the math we did when we were considering FCS, though the physics is very different!

If you plot the fluctuations in channel conductance as a function of the mean conductance
during a voltage sweep, you get an upside-down parabola.

2.3 Example: tension-sensitive ion channels, ligand-gated ion chan-
nels, temperature-sensitive ion channels

You can go through very similar calculations to look at the gating of the ion channels that
sense membrane tension. Here you just replace V dq by σdA, where σ is the membrane
tension and dA is the difference in membrane area between the closed and open states of the
channel. Do you want dA to be big or small if you want a very sensitive mechanosensor?

You can also apply this argument to temperature sensation. [SEE CLAPHAM 2011
PNAS PAPER]. Vanilloid receptor channels change (e.g. the TrpV1 channel for whose dis-
covery David Julius won the 2021 Nobel Prize in Physiology or Medicine) have an e-fold
change in open probability over a 3 degree change in temperature. How do you get such a
steep change? You need something which approaches a phase transition, as though a domain
in the protein is melting. Let’s see how that can happen. Combining:

∆G0 = −RT lnKeq (26)

with
∆G0 = ∆H0 − T∆S0 (27)

gives
lnKeq = −∆H0/RT +∆S0/R. (28)

From this you can see that the steepness with which Keq varies with T depends on the
enthalpy change, ∆H0. For the TrpV1 channel, ∆H0 is approximately 100 kCal/mole (equal
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to 170 kBT/molecule at room temperature), whereas the enthalpy change for most protein
conformational transitions is typically 2-10 kCal/mole. This means that a relatively large
portion of the receptor must be unfolding (approximately 50 amino acids).

The picture is actually more complicated than this because, for proteins, both ∆H0

and ∆S0 also depend on temperature. See the Clapham paper for an exploration of the
consequences.

2.4 Example: 1-D freely-jointed chain

In a few weeks we’ll see that the same math can be applied to stretching of a polymer, where
you have segments that can either point left or right and you want to know the probability
that a force causes a chain link to point to the left vs right.

2.5 Effect of forces on rate constants

The parameter ∆G is useful for determining equilibrium constants (the conditions under
which a process stops), but also for estimating rates, since ∆G† shows up in the exponent in
the rate constant. Even without a microscopic model of the rate constant, we can ask how
do external forces affect the rates of forward and backward reactions.

The general notion behind calculating rates of processes is that we draw a potential
energy surface connecting the two states. We assume that each state corresponds to a fairly
deep minimum (deeper than kBT ). At the transition state we assume that the potential
energy surface has a saddle point: it goes down if you head towards reactants or products,
and it goes up if you head in any other direction.

For a molecule to cross between reactants and products, it has to get over the transition
state. The number of molecules at the transition state is proportional to e−∆G†/kBT . Thus
it is reasonable to assume that the forward rate of a reaction is:

kAB = k
(0)
A e

−G†−GA
kBT , (29)

where G is the free energy of the transition state, GA is the free energy of the initial state
A, and k

(0)
A is some attempt frequency. Similarly the rate of the reverse reaction would be:

kBA = k
(0)
B e

−G†−GB
kBT . (30)

We can get the equilibrium constant from the rates as follows. The rate of change of popu-
lation in A is:

d[A]

dt
= −kAB[A] + kBA[B]. (31)

At equilibrium, by definition d[A]/dt = 0, which implies that at equilibrium

Keq =
kAB

kBA

=
k0
A

k0
B

e
−GB−GA

kBT (32)
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So in the equilibrium constant, all information about the height and shape of the barrier is
lost.

But something interesting happens when we consider the kinetics. For concreteness, let’s
imagine that we’re applying a force to the system, F , and states A and B are separated
by a distance L. Then the whole potential energy surface gets tilted, just as we saw for
the voltage-gated ion channel. The energy of the state B is increased relative to state A by
an amount FL. The energy shift in the transition state depends on where it is along the
reaction path. Let’s call α the fractional position of the transition state (so 0 ≤ α ≤ 1).
Then the energy shift of the transition state relative to state A is αLF and the energy shift
relative to B is −(1− α)L. So the rate constants become:

kAB = k0
ABe

−αFL
kBT , (33)

and

kBA = k0
BAe

+
(1−α)FL

kBT . (34)

As before, the ratio of the rate constants gives the total equilibrium constant:

Keq = K0
eqe

− FL
kBT . (35)

Recall from our general discussion of two-state kinematics, the relaxation rate constant
for the whole system is the sum of the forward and backward rate constants, so

kTot = k0
ABe

−αFL
kBT + k0

BAe
+

(1−α)FL
kBT . (36)

This means that the rate goes up when F is either very positive or very negative. The system
is slowest when it is balanced, i.e. when the forward and backward rate constants are equal
and [A] = [B].

3 Microscopic models of rate constants

Now we will talk about how to calculate forward and reverse rates of a reaction from an
underlying model of the dynamics. The goal is to calculate the prefactors k

(0)
A and k

(0)
B which

we’ve been waving our hands at up to this point.
Different models of rate processes are appropriate for different scenarios. The correct

model depends on a number of factors, including:

� the number of degrees of freedom involved and how strongly they are coupled to their
environment, i.e. whether their motion is overdamped or underdamped;

� whether quantum mechanics is important, i.e. whether electronic or vibrational split-
tings are comparable to the barrier height. For instance, if you consider electron-
transfer reactions or photochemistry (as occurs in vision or photosynthesis), then quan-
tum mechanics matters;

� how thermal energy compares to other energy scales. Different theories are needed
depending on whether thermal energy is greater or less than the barrier height or the
quantum level spacing.
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� the shape of the potential energy landscape: whether it is symmetrical or asymmetrical
between reactants and products or biased; and whether it is constant in time or time-
varying.

Today we’ll limit ourselves to overdamped motion, ignoring quantum mechanics, and
assuming a large barrier height.

3.1 Eyring model

Before we tackle the Kramers theory, let’s give a näıve picture, called the Eyring theory. In
the Eyring theory, each molecule undergoes underdamped oscillations in its potential well,
so the attempt frequency is just the natural oscillation frequency:

k(0) =
1

2π

√
α

m
, (37)

where α is the spring constant. The idea is that in each cycle the total energy of the oscillation
(and hence its amplitude) is randomized according to a Boltzmann distribution, so each cycle
you get a new attempt to hop over the barrier. How this happens in an underdamped system
(which can only interact weakly with its environment) is not specified in the model.

Let’s poke at the Eyring model to see where it fails.

� If you’re totally underdamped and you have enough energy to hop over the barrier
from A to B, then you will keep going up the other side of B, swing back, and return
back over the barrier back into A.

� This model also doesn’t take into account any of the effects of damping or diffusion
that are so critical in determining many rate processes. For instance, the Eyring model
predicts that viscosity should play no role in determining the rate; but we know that
in many cases viscosity is important.

� [DRAW TWO POTENTIAL ENERGY CURVES WITH THE SAME MINIMA AND
BARRIER HEIGHTS, BUT ONE VERY BROAD BARRIER AND ONE NARROW
BARRIER] Which of these will have a faster rate? Clearly the one with the broad
barrier will have a slower rate. But the Eyring model doesn’t pay any attention to the
shape of the barrier

To see that the Eyring model does not apply to many biomolecular reactions, consider that
the rates of most biomolecular processes do not change if you substitute in different isotopes,
but change radically if you change the viscosity of the solution. The Eyring model gives an
upper limit on the rate of any reaction.

3.2 Kramers Theory

To make a more accurate picture we have to delve into the details of the process. We’ll
start by considering a one-dimensional double-well. The analysis below closely follows that
in Landauer and Swanson, “Frequency Factors in the Thermally Activated Process,” Phys.
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Rev. 121, 1668 (1961), posted on the website. There are a variety of different models for
the potential energy surface which give slightly different expressions, though the qualitative
behavior will be similar. Several of these alternative models (e.g. an ’N’-shaped well and a
’U’-shaped well are explored in Howard Ch. 5.

We will start out with all the particles in well A, and as they hop over the barrier into
well B we pull them out and put them back in A. If the population of well A is PA, and the
number of particles crossing the barrier per unit time is j, then the forward rate constant
for the reaction is:

kAB = j/PA. (38)

We assume that the relaxation within wellA is fast compared to the rate of escape of particles.
So everywhere except possibly right near the transition state, the population distribution in
A looks as though it is in equilibrium.

Our first trick is to write the total density as a small deviation on the equilibrium density.
So for the near-equilibrium case we have:

ρ(x) = β(x)e−U/kBT . (39)

This expression does not entail any loss of generality because β(x) could be anything.
Now we will make some approximations for β(x) that will allow us to solve the problem.

Near the bottom of well A, β is pretty much constant. In wellB β(x) ≈ 0 (recall that we don’t
let particles accumulate in B. And it’s a safe bet to assume that β(x) goes monotonically
from β(A) to 0 as we cross the barrier. [INSERT DRAWING OF APPROXIMATE FORM
OF β(x).]

First let’s get a relation between β(A) and PA. If we Taylor expand the potential near
the minimum in well A as

U(x) = UA +
1

2
αAx

2, (40)

then the total population in well A is roughly given by:

PA ≈ β(A)e−UA/kBT

∫ ∞

−∞
e−αAx′2/2kBTdx′

= β(A)e−UA/kBT

√
2πkBT

αA

. (41)

Let’s put this result aside for later.
Now let’s figure out j, by looking at the flux across the midline. We start with the

Smoluchowski formula in 1-D:

j = −ρ

γ

dU

dx
−D

dρ

dx
. (42)

Here U is the potential, D is the diffusion coefficient, and γ is the drag coefficient. This
equation should look pretty familiar by now. The equilibrium density distribution ignoring
leakage over the barrier is:

ρi = ce−U/kBT . (43)

Plugging the ansatz ρ(x) = β(x)e−U/kBT into the Smoluchowski equation yields:

j = −D

(
dβ

dx

)
e−U/kBT . (44)
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Now we rearrange this equation, solving for dβ/dx, and then we integrate dx. This gives:

β(x) = β0 −
∫

j

D
eU(x′)/kBTdx′. (45)

Where is this integral large? Well, the dominant contribution comes from where U(x′)
is largest. Since U(x′) shows up in the exponential, let’s expand the potential about the
maximum:

U(x′) = U0 −
1

2
α0x

′2 + . . . . (46)

We want an expression for β(A), and we can take advantage of the fact that we know
β(B) ≈ 0. So we have:

β(A) = −
∫ A

B

j

D
e(U0− 1

2
α0x′2)/kBTdx′. (47)

But now the right hand side is just a Gaussian integral, which we know and love. Evaluating
the integral gives:

β(A) =
j

D
eU0/kBT

√
2πkBT

α0

. (48)

Rearranging this result yields

j = Dβ(A)

√
α0

2πkBT
e−U0/kBT . (49)

To get the rate we look at the ratio of the flux to the population:

kAB =
j

PA

= De−(U0−UA)/kBT

√
α0αA

2πkBT
. (50)

As expected, the result is independent of our trial function β(x).
We can rewrite this formula in a suggestive form which emphasizes the difference from

the Eyring theory. Recall from the Stokes-Einstein formula D/kBT = 1/γ. So we have:

kAB =

√
αAα0

2πγ
e−(U0−UA)/kBT . (51)

Note that for an oscillator of massm subject to a restoring force α, the frequency of oscillation
is

ω =

√
α

m
. (52)

This means that the forward rate is:

kAB = ω0τr
ωA

2π
e−(U0−UA)/kBT , (53)

where τr = m/γ is the momentum relaxation time of the particle. This result differs from
the Eyring result by a factor of ω0τr. We are considering motion that is highly overdamped,
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so ω0τr ≪ 1. Thus, not surprisingly, the Kramers rate is much slower than the Eyring rate.
What is, perhaps, surprising is that the main difference has to do not with the shape of the
potential at the minimum, but with the detailed shape of the potential barrier itself.

The Kramers model is pretty good, but it does slightly overestimate the rate. To see why,
consider a particle that has just crossed over the maximum of the reaction coordinate. Very
close to the maximum, the particle sees a locally flat potential. This means that the particle
has some finite probability of crossing back over the maximum into the well from which it
came. In other words, a particle perched exactly at the top of the well has a 50% probability
of going down either side. A particle infinitesimally to the right of the maximum, which we
just counted as a reaction, still has a roughly 50% probability of going down either side.

3.3 Multidimensional Kramers

We’ve left one very important fact out of our discussion. We considered a purely 1-D reaction
coordinate, and lumped all the other degrees of freedom of the system into a “bath” whose
only role is to provide viscous drag. In fact, life is not so simple.

Here’s the problem. Complex molecules have a great many internal degrees of freedom.
For instance, in a protein there are many bonds about which you can rotate. To undergo
a transition from one state to another, you might have to adopt a particular conformation
along many of your internal degrees of freedom. That is, you might have to squeeze through
a conformational bottleneck. Doing so costs entropy. So far we’ve discussed the problem in
purely energetic terms, as is appropriate for the 1-D case. In reality we should think about
the free energy. How to factor that in?

[DRAW A 2-DIMENSIONAL POTENTIAL ENERGY SURFACEWITH TWO BASINS
SEPARATED BY A SADDLE POINT]

We’ll now repeat the derivation at an accelerated pace, considering motion in an arbitrary
number of dimensions. The details are given in the paper by Landauer and Swanson, posted
on the website.

The population of basin A is given by

PA = β(A)

∫
. . .

∫
dx1 . . . dxne

−U(x1,...,xn)
kBT . (54)

Note that the integral on the r.h.s. is just the formula for the partition function! We’ll return
to that fact in a minute. Again we make a harmonic approximation for the potential about
its minimum, so we get n Gaussian integrals. These are all the same, so we have

PA = β(A)e
− UA

kBT

n∏
i=1

√
2πkBT

αi

. (55)

Now we evaluate the total flux across the saddle point (integrating over all the perpendic-
ular degrees of freedom). There are only n−1 perpendicular degrees of freedom because one
degree of freedom is the reaction coordinate which we have to handle specially. Again, we
make a harmonic approximation for each of the degrees of freedom, so we get n−1 Gaussian
integrals. Evaluating the integral gives:

j = Dβ(A)

√
α0

2πkBT
e−U0/kBT

n−1∏
i=1

√
2πkBT

κi

, (56)

13



where the κi are the spring constants along all of the orthogonal degrees of freedom in the
transition state. The rate constant becomes:

kAB =
1

2πγ

√
α0

∏n
i=1 αi∏n−1

i=1 κi

e
−U0−UA

kBT . (57)

This is an explicit formula for the rate in terms of the spring constants along all the axes in
the ground state and the transition state.

Now I’ll show you two nice examples of application of Kramers’ Theory:
[SHOW EXAMPLE FROM MCCANN ET AL, AND FROM MY PRL PAPER ON

NANOPARTICLES IN ARBITRARY FORCE FIELDS]

3.4 Kramers and entropy

Let’s discuss some subtleties associated with the Kramers picture.
[DRAW TWO STATES WITH ENERGIES UA AND UB]
We define the equilibrium constant for the reaction to be

Keq =
[B]

[A]
, (58)

and Boltzmann would tell us that this ratio is Keq = e−(UB−UA)/kBT . Now let’s connect these
two states by a potential energy surface.

[DRAW A SURFACE IN WHICH STATE B IS IN A NARROW WELL AND STATE
A IS IN A BROAD WELL]

But Kramers says kAB =
√
αAα0

2πγ
e−(U0−UA)/kBT and kBA =

√
αBα0

2πγ
e−(U0−UB)/kBT , where αi

represents the absolute value of the curvature at position i. If we plug in the Kramers rates
to the expression Keq = kAB/kBA, we get:

Keq =

√
αA

αB

e−(UB−UA)/kBT . (59)

This is different from the Boltzmann prediction. So what Gibbs?
The answer is that our two macrostates that we are calling A and B each correspond

to an ensemble of microstates. Within each well, there is a large number of positions that
the particle can occupy. Each of those states is occupied with a probability given by a
Boltzmann factor, but the total probability to be in each well has to be summed over all of
those microstates. If one well has more states available to it, the larger number of states can
offset an energetic term that disfavors that well. Our next mission will be to figure out how
to correct the Boltzmann distribution when there are multiple microstates (e.g. positions in
the well) associated with each macrostate (e.g. well identity).

Let’s start with the simple case, where we imagine that all the states within each well are
degenerate. Clearly this is not the case for the parabolic double-well, but it will help us to
build intuition. This would be the case for square-bottom wells. When there are degenerate
states, the Boltzmann distribution is:

[B]

[A]
=

nB

nA

e−(UB−UA)/kBT , (60)
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where nB and nA are the number of degenerate microstates within each well. Clearly it
doesn’t matter how finely we divide up space to count the microstates, because our dis-
cretization size will cancel in the ratio. For instance, if we had square-bottom wells of length
lB and lA, respectively, then nB/nA = lB/lA.

For degenerate states, we define the entropy

S = kB ln(Ω) (61)

where Ω is the number of degenerate states. We can write

nB

nA

= exp[ln(nB)− ln(nA)] (62)

= exp[
kBT (ln(nB)− ln(nA))

kBT
] (63)

= exp[
T∆S

kBT
]. (64)

If we make this substitution into the expression for the equilibrium constant, we get

[B]

[A]
= exp[−UB − UA − T∆S

kBT
] (65)

= exp[−∆G

kBT
], (66)

where we have introduced ∆G = ∆U − T∆S. So you see how the free energy emerges
naturally just from our need to account for all the different microstates that correspond to
each macrostate.

Now what do we do if the microstates are not degenerate? In this case, the entropy is
defined as

S = −kB

∫ ∞

−∞
p(x) ln(p(x))dx. (67)

Check that when all states are degenerate this reduces to the formula we gave above!
Let’s define a helper function, called the partition function, defined as:

Z =

∫ ∞

−∞
e−U(x)/kBTdx. (68)

When each macrostate corresponds to multiple microstates, we no longer define the
energy of the macrostate by the bottom of the well, but instead we define it by the expectation
value of the energy in the well:

⟨U⟩ =
∫ ∞

−∞
p(x)U(x)dx, (69)

where p(x) is governed by the Boltzmann distribution:

p(x) =
1

Z
exp[−U(x)/kBT ]. (70)
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If we define the free energy as G = ⟨U⟩ − TS, then we have

G =

∫ ∞

−∞
p(x)U(x)dx+ kBT

∫ ∞

−∞
p(x) ln p(x)dx (71)

=

∫ ∞

−∞
p(x)[U(x) + kBT ln p(x)]dx (72)

=
1

Z

∫ ∞

−∞
exp[−U(x)/kBT ][U(x) + kBT ln

(
1

Z
exp[−U(x)/kBT ]

)
]dx (73)

=
1

Z

∫ ∞

−∞
exp[−U(x)/kBT ][U(x)− kBT lnZ − U(x)]dx (74)

= −kBT lnZ. (75)

Now if we have two states, A and B, then the ratio of the populations in the two states
is just

[B]

[A]
=

∫
B
exp[−U(x)/kBT ]dx∫

A
exp[−U(x)/kBT ]dx

(76)

=
ZB

ZA

(77)

= exp[−(GB −GA)/kBT ]. (78)

Returning now to the Kramers formula, the quantities
√
kBT/αA and

√
kBT/αB are

measures of the width of each of the wells, i.e. the horizontal distance you have to go to
attain an energy of order kBT . It is conventional to write the prefactors in Eq. 59 in a
slightly different form:

Keq = exp

[
−(UB − kBT lnα

−1/2
B )− (UA − kBT lnα

−1/2
A )

kBT

]
. (79)

The difference in entropy between the two wells is

∆S = kB ln

√
αB

αA

, (80)

and the difference in free energy is

∆G = (UB − UA) +
1

2
ln

αB

αA

. (81)

A more rigorous calculation of the entropy of a harmonic oscillator is in Howard Appendix
5.1 and gives the same result. Note that we were able to set ∆⟨U⟩ = UB − UA because the
thermal energy just adds kBT/2 to both states, which cancels when we take the difference!
Equipartition again!

Returning to the original Kramers formula for a harmonic well, we can ask how to estimate
the rate for some oddly shaped potential energy surface. The Kramers formula generalizes
to the form

kAB ≈ D

l0lA
e
−U0−UA

kBT (82)
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where lA and l0 are the width of the initial state and the transition state, respectively. These
widths correspond to the distance you have to go to attain an energy of approximately kBT .

[DRAW TWO POTENTIAL ENERGY SURFACES, ONE WITH A SHARP MINIMUM
AND MAXIMUM, AND ONE WITH BROAD MINIMA AND MAXIMA]

Which of these two surfaces would lead to a faster rate from A to B?
Models of this sort are the basis for our understanding of most molecular motors and

motor proteins. We will return to many examples of this later in the course.

3.5 Comparison between Kramers and electronic transitions

In the Kramers model, we can think of a protein as gradually ambling up to the transition
state, and then once it crosses the transition state it cruises downhill to the final state.
Because of this, reaction rates are strongly dependent on viscosity and on mechanical forces
that might assist or counteract this motion towards the transition state (more on mechanical
forces later). This view contrasts sharply with the view of reactions you might have learned
in other chemistry classes. For instance, in photochemical reactions we have something called
the “Franck-Condon Principle” which tells us that the electrons move so much faster than
the atoms that the atoms are essentially stationary during the fundamental reaction step,
and that the atoms relax after the process is over.

An example of a scenario where the Kramers theory doesn’t apply is in a molecule
called Bacteriorhodopsin, that we’re studying in my lab. Here the reaction is initiated by
absorption of a photon, which occurs in a few hundred femtoseconds. This reaction causes a
molecule of retinal to isomerize, which then drives a cascade of conformational changes that
can take hundreds of milliseconds to complete. Here the initiation of the reaction occurs in
an essentially rigid atomic framework, and all of the mechanical motion is associated with
the aftermath. If we were to try to drive the photocycle backwards, then it would look like
a Kramers process.

[GIVE TUTORIAL ON MICROBIAL RHODOPSINS]
Typically Kramers theory is good for reactions where a large conformational change

precedes the reaction. In cases in which there is an electron-transfer or a photochemical
component, then an Eyring picture is more appropriate.
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