
September 13, 2022 CHEM 163 Section 2: Solutions to the diffusion equation Ryan McMillan

Announcements

Office hours this week:
4-5 PM on Tuesday the 13th (right after section!)

7-8:30 PM on Wednesday the 14th, virtual at https://harvard.zoom.us/j/98197473635.

or by appointment.

Section next week:
No section :(((. Section problems and solutions will be posted on Canvas.

Cool paper(s) I’m reading:
https://rdcu.be/cVi10
Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics: Cool
application of single-molecule fluorescence imaging to cancer diagnostics.

Problem 1: Diffusion-limited off rates

In class, we derived an expression for the maximum reaction rate, assuming that diffusion is the sole limiting
factor. We can perform a similar calculation to calculate the maximum possible off rate.
a) First, let’s remind ourselves of the solution to the diffusion equation in 3 dimensions from a spherical
point source. Let the concentration infinitely far from the point source decay to 0. The steady-state diffusion
equation in spherical coordinates with spherical symmetry is:
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dc
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)
= 0. (1)

Solve this equation. There will be an unknown constant in your equation—don’t worry about it for this part.

b) Now, consider a spherical particle A (immobile in this reference frame) initially bound to N spheri-
cal particles B. To model the steady-state flux away from the surface of A, we define a spherical shell of
radius R which is just big enough to contain the N particles of B. We then release the B particles and
whenever a particle of B diffuses outside this shell, we replace it by a new particle of B at radius R. Using
this information, determine the constant left in your equation from part (a).
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c) Now using Fick’s first law, determine the flow of particle B away from the surface of particle A. Report
your answer as a rate. Use the Stokes-Einstein relation to eliminate D from your result.

d) Using your expression derived in (c), estimate the maximal off-rate for a pair of typical proteins. Feel free
to look up any constants you may need and to make a reasonable guess as to the typical size of a protein.

2



September 13, 2022 CHEM 163 Section 2: Solutions to the diffusion equation Ryan McMillan

Problem 2: Steady-state diffusion

Suppose that in 1D, two bacteria are separated by a distance L, and a nutrient source is placed at a
distance x0 from one of the bacteria (and L − x0 from the other). Assuming the source continuously pro-
duces nutrients while the bacteria continuously absorb them, then a steady state will be reached.
Here, we will determine what fraction of the nutrients will reach each of the two bacteria, depending on the
source’s position. This is an analytical version of a problem which you solved numerically on your HW.

a) Treat this as a 1D diffusion problem (see above) with absorbing boundaries at x = 0 and x = L.
Assuming the concentration is always c0 at the source (x = x0), solve for the steady state concentration of
nutrients as a function of x. Hint: Solve the steady-state diffusion equation separately to the left and to the
right of x = x0, then match boundary conditions at x0.
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b) Compute the flux at x = 0 and x = L. From here, compute the fraction of nutrients absorbed per
unit time by each of the two bacteria. How does this depend on x0?

Problem 3: Time-dependent diffusion in a pipe

Let’s now consider time-dependent diffusion in a simple, 1D case. Say that we have a column of solu-
tion in which some chemical species is at concentration c0. At time t = 0, we expose this column to another
one at concentration 0. Let the boundary between the two columns be at x = 0.
a) Write down a set of boundary conditions for t = 0.

b) The time-dependent diffusion equation here has the solution:

C(x, t) =
c0
2

[
1 + erf

x

(4Dt)1/2

]
, (2)

where erf(x) is the error function:

erf(x) =
2√
π

∫ x

0

e−u2

du, (3)

which can be evaluated numerically in Matlab using the erf() function. Working in units in which D = 1,
plot the concentration profile as a function of x for the following times: t = 1, 4, 16, 64. Comment on your
results.
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