
November 1, 2022 CHEM 163 Section 8 Ryan McMillan

Announcements

Office hours this week:
4-5 pm (right after section) on Tuesday the 1st

Wednesday from 7-8:30 pm on Zoom

or by appointment.

Section next week:
In-person on November 8th at 3 pm in M217.

Paper of the week
10.1126/science.abo7651
A new integrated semiconductor platform for single-molecule sequencing of short peptides with that can
discriminate between amino acids using the lifetimes of different protein-based N-terminal binders. Very cool
work!

Problem 1: Activation and repression curves for genetic circuits

In this problem, we construct the binding curves for activators and repressors of transcription, which can be
applied to a variety of problems involving biological circuits.

a) Let’s first consider a repressor protein X and its target DNA sequence D. The association rate of
the two is kon[X][D], while the dissociation rate is koff [XD]. In addition, we apply the constraint that the
total number of DNA binding sites must remain constant: [XD]+ [D] = DT . Using this information, derive
an expression for the fraction of DNA binding sites that are free at steady state.
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b) Letting β denote the rate constant for the promoter of gene D, compute the promoter activity (i.e.
the concentration times the rate constant). Sketch your result as a function of [X].

c) Let’s now instead consider a cooperative model of transcriptional activation. In this model, n molecules
of protein SD associate and then bind to D. Letting kon and koff denote the on and off rate of this system,
respectively, write down the rate equations for nSDD and conservation law for D.

d) Using the same procedure as previously, derive the fraction of DNA binding sites that are bound by
the inducer. You should find that the solution is:

[nSDD]

Dtot
=

[SD]n

Kn
D + [SD]n

. (1)

Make sure to specify the value of Kn
D.
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e) Sketch your result from part (d) as a function of [SD] for different values of n. You might try n = 1, 2, 4.
Can you describe what’s happening to the curve.

This is a variant of the Hill equation, which is an extremely useful model of cooperative binding. Note
that in practice, the exponent in the binding curve will always be less than n.

Problem 2: The incoherent type-1 feed-forward loop

Here we consider a common motif in a variety of gene regulatory networks. In this motif, the product
of gene X has two effects when it is active: it activates gene Z and, in parallel, activates gene Y , whose
product represses gene Z. The proteins produced by X and Y are denoted X∗ and Y ∗, respectively, when
activated by proteins Sx or Sy.
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Activating gene X therefore triggers a pulse of Z transcription. In this problem, we will examine these
dynamics in more detail.

a) Initially, all protein products have concentration 0. When we suddenly increase the level of Sx, the
product of gene X is activated and transitions to X∗. We can approximate this transition as a step function
at t = 0. X∗ binds to the promoter of Y , whose product can then be activated by Sy. The dynamics of the
activated product are governed by the rate equation:

dY ∗

dt
= βy − αyY

∗. (2)

Find the solution to this differential equation and plot Y ∗ as a function of t.

b) When X is active, Z is also produced. Its dynamics are initially governed by the rate equation:

dZ

dt
= βz − αzZ. (3)

To simplify calculations, we will make the so-called logic approximation, in which we replace the sigmoidal
response curves you derived in the previous part with step functions at K. Using this approximation, once
the concentration of Y ∗ reaches Kyz, the rate of Z production instantaneously drops to β′

z. Using your
result from (a), find the time at which this occurs Trep as a function of the rate constants for Y ∗ and Kyz.
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c)Find an equation for the concentration of Z for t > Trep. Combine this with your equation for 0 < t < Trep

to describe the dynamics of Z for all time. Hint: you shouldn’t need to separately solve for the equation
when 0 < t < Trep and can instead figure this out from your result in (a).

d) We can define the repression factor F as the ratio of the steady state of Z prior to Trep to the steady
state after Trep. Sketch the curve of Z for all t > 0 for F = 2, 4, and 8.
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